ترغب بنشر مسار تعليمي؟ اضغط هنا

Environments of Strong / Ultrastrong, Ultraviolet Fe II Emitting Quasars

151   0   0.0 ( 0 )
 نشر من قبل Roger Clowes
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the strength of ultraviolet Fe II emission from quasars within the environments of Large Quasar Groups (LQGs) in comparison with quasars elsewhere, for 1.1 <= <z_LQG> <= 1.7, using the DR7QSO catalogue of the Sloan Digital Sky Survey. We use the Weymann et al. W2400 equivalent width, defined between the rest-frame continuum-windows 2240-2255 and 2665-2695 Ang., as the measure of the UV Fe II emission. We find a significant shift of the W2400 distribution to higher values for quasars within LQGs, predominantly for those LQGs with 1.1 <= <z_LQG> <= 1.5. There is a tentative indication that the shift to higher values increases with the quasar i magnitude. We find evidence that within LQGs the ultrastrong emitters with W2400 >= 45 Ang. (more precisely, ultrastrong-plus with W2400 >= 44 Ang.) have preferred nearest-neighbour separations of ~ 30-50 Mpc to the adjacent quasar of any W2400 strength. No such effect is seen for the ultrastrong emitters that are not in LQGs. The possibilities for increasing the strength of the Fe II emission appear to be iron abundance, Ly-alpha fluorescence, and microturbulence, and probably all of these operate. The dense environment of the LQGs may have led to an increased rate of star formation and an enhanced abundance of iron in the nuclei of galaxies. Similarly the dense environment may have led to more active blackholes and increased Ly-alpha fluorescence. The preferred nearest-neighbour separation for the stronger emitters would appear to suggest a dynamical component, such as microturbulence. In one particular LQG, the Huge-LQG (the largest structure known in the early universe), six of the seven strongest emitters very obviously form three pairings within the total of 73 members.



قيم البحث

اقرأ أيضاً

We present spectra of six luminous quasars at z ~ 2, covering rest wavelengths 1600-3200 A. The fluxes of the UV Fe II emission lines and Mg II 2798 doublet, the line widths of Mg II, and the 3000 A luminosity were obtained from the spectra. These qu antities were compared with those of low-redshift quasars at z = 0.06 - 0.55 studied by Tsuzuki et al. In a plot of the Fe II(UV)/Mg II flux ratio as a function of the cental black hole mass, Fe II(UV)/Mg II in our z ~ 2 quasars is systematically greater than in the low-redshift quasars. We confermed that luminosity is not responsible for this excess. It is unclear whether this excess is caused by rich Fe abundance at z ~ 2 over low-redshift or by non-abundance effects such as high gas density, strong radiation field, and high microturbulent velocity.
We investigate the strength of ultraviolet Fe II emission in fainter quasars compared with brighter quasars for 1.0 <= z <= 1.8, using the SDSS (Sloan Digital Sky Survey) DR7QSO catalogue and spectra of Schneider et al., and the SFQS (SDSS Faint Quas ar Survey) catalogue and spectra of Jiang et al. We quantify the strength of the UV Fe II emission using the W2400 equivalent width of Weymann et al., which is defined between two rest-frame continuum windows at 2240-2255 and 2665-2695 Ang. The main results are the following. (1) We find that for W2400 >~ 25 Ang. there is a universal (i.e. for quasars in general) strengthening of W2400 with decreasing intrinsic luminosity, L3000. (2) In conjunction with previous work by Clowes et al., we find that there is a further, differential, strengthening of W2400 with decreasing L3000 for those quasars that are members of Large Quasar Groups (LQGs). (3) We find that increasingly strong W2400 tends to be associated with decreasing FWHM of the neighbouring Mg II {lambda}2798 broad emission line. (4) We suggest that the dependence of W2400 on L3000 arises from Ly{alpha} fluorescence. (5) We find that stronger W2400 tends to be associated with smaller virial estimates from Shen et al. of the mass of the central black hole, by a factor ~ 2 between the ultrastrong emitters and the weak. Stronger W2400 emission would correspond to smaller black holes that are still growing. The differential effect for LQG members might then arise from preferentially younger quasars in the LQG environments.
The enrichment of Fe, relative to alpha-elements such as O and Mg, represents a potential means to determine the age of quasars and probe the galaxy formation epoch. To explore how ion{Fe}{2} emission in quasars is linked to physical conditions and abundance, we have constructed a 830-level ion{Fe}{2} model atom and investigated through photoionization calculations how ion{Fe}{2} emission strengths depend on non-abundance factors. We have split ion{Fe}{2} emission into three major wavelength bands, ion{Fe}{2} (UV), ion{Fe}{2}(Opt1), and ion{Fe}{2}(Opt2), and explore how the ion{Fe}{2}(UV)/ion{Mg}{2}, ion{Fe}{2}(UV)/ion{Fe}{2}(Opt1) and ion{Fe}{2}(UV)/ion{Fe}{2}(Opt2) emission ratios depend upon hydrogen density and ionizing flux in broad-line regions (BLRs) of quasars. Our calculations show that: 1) similar ion{Fe}{2}(UV)/ion{Mg}{2} ratios can exist over a wide range of physical conditions; 2) the ion{Fe}{2}(UV)/ion{Fe}{2}(Opt1) and ion{Fe}{2}(UV)/ion{Fe}{2}(Opt2) ratios serve to constrain ionizing luminosity and hydrogen density; and 3) flux measurements of ion{Fe}{2} bands and knowledge of ionizing flux provide tools to derive distances to BLRs in quasars. To derive all BLR physical parameters with uncertainties, comparisons of our model with observations of a large quasar sample at low redshift ($z<1$) is desirable. The STIS and NICMOS spectrographs aboard the Hubble Space Telescope (HST) offer the best means to provide such observations.
The observed line intensity ratios of the Si II 1263 and 1307 AA multiplets to that of Si II 1814,AA in the broad line region of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al. ( 1996), who termed it the Si II disaster, and it has remained unresolved. We investigate the problem in the light of newly-published atomic data for Si II. Specifically, we perform broad line region calculations using several different atomic datasets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and also consider blending with other species. However, we find that none of the options investigated resolves the Si II disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity ($sim 500 rm , kms^{-1}$) may solve the Si II disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si II 1307 AA multiplet with emission lines of O I, although the predicted degree of blending is incompatible with the observed 1263/1307 intensity ratios. Clearly, more work is required on the quasar modelling of not just the Si II lines but also nearby transitions (in particular those of O I) to fully investigate if blending may be responsible for the Si II disaster.
The M82 galaxy has been the subject of several studies basically because it is relatively close to to the Milky Way and it displays a strong star formation activity. Using multi-band images of M82 we have determined the age and extinction of the stel lar population located in regions with strong UV emission, these region are in the nucleus and the disk of M82. We also have employed the UV images of M82 and the physical properties of its stellar clusters to measure the contribution of the clusters to the detected UV flux. We found that clusters located in the nuclear regions are emitting all the observed UV flux, whereas clusters of the disk emit less than ~10%. Based on the results obtained from this work we can infer that the field stars located in the disk of M82 could have been part of a stellar cluster when they were born.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا