ترغب بنشر مسار تعليمي؟ اضغط هنا

Metadata Challenge for Query Processing Over Heterogeneous Wireless Sensor Network

124   0   0.0 ( 0 )
 نشر من قبل Komalavalli Chakravarthi
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless sensor networks become integral part of our life. These networks can be used for monitoring the data in various domain due to their flexibility and functionality. Query processing and optimization in the WSN is a very challenging task because of their energy and memory constraint. In this paper, first our focus is to review the different approaches that have significant impacts on the development of query processing techniques for WSN. Finally, we aim to illustrate the existing approach in popular query processing engines with future research challenges in query optimization.



قيم البحث

اقرأ أيضاً

To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.
Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in pa rallel on a shared graph. These applications generate a dynamic number of localized queries around query hotspots such as popular urban areas. However, existing graph processing systems are not yet tailored towards these properties: The employed methods for graph partitioning and synchronization management disregard query locality and dynamism which leads to high query latency. To this end, we propose the system Q-Graph for multi-query graph analysis that considers query locality on three levels. (i) The query-aware graph partitioning algorithm Q-cut maximizes query locality to reduce communication overhead. (ii) The method for synchronization management, called hybrid barrier synchronization, allows for full exploitation of local queries spanning only a subset of partitions. (iii) Both methods adapt at runtime to changing query workloads in order to maintain and exploit locality. Our experiments show that Q-cut reduces average query latency by up to 57 percent compared to static query-agnostic partitioning algorithms.
The broadening adoption of machine learning in the enterprise is increasing the pressure for strict governance and cost-effective performance, in particular for the common and consequential steps of model storage and inference. The RDBMS provides a n atural starting point, given its mature infrastructure for fast data access and processing, along with support for enterprise features (e.g., encryption, auditing, high-availability). To take advantage of all of the above, we need to address a key concern: Can in-RDBMS scoring of ML models match (outperform?) the performance of dedicated frameworks? We answer the above positively by building Raven, a system that leverages native integration of ML runtimes (i.e., ONNX Runtime) deep within SQL Server, and a unified intermediate representation (IR) to enable advanced cross-optimizations between ML and DB operators. In this optimization space, we discover the most exciting research opportunities that combine DB/Compiler/ML thinking. Our initial evaluation on real data demonstrates performance gains of up to 5.5x from the native integration of ML in SQL Server, and up to 24x from cross-optimizations--we will demonstrate Raven live during the conference talk.
In past years there has been increasing interest in field of Wireless Sensor Networks (WSNs). One of the major issue of WSNs is development of energy efficient routing protocols. Clustering is an effective way to increase energy efficiency. Mostly, h eterogenous protocols consider two or three energy level of nodes. In reality, heterogonous WSNs contain large range of energy levels. By analyzing communication energy consumption of the clusters and large range of energy levels in heterogenous WSN, we propose BEENISH (Balanced Energy Efficient Network Integrated Super Heterogenous) Protocol. It assumes WSN containing four energy levels of nodes. Here, Cluster Heads (CHs) are elected on the bases of residual energy level of nodes. Simulation results show that it performs better than existing clustering protocols in heterogeneous WSNs. Our protocol achieve longer stability, lifetime and more effective messages than Distributed Energy Efficient Clustering (DEEC), Developed DEEC (DDEEC) and Enhanced DEEC (EDEEC).
Sample-based approximate query processing (AQP) suffers from many pitfalls such as the inability to answer very selective queries and unreliable confidence intervals when sample sizes are small. Recent research presented an intriguing solution of com bining materialized, pre-computed aggregates with sampling for accurate and more reliable AQP. We explore this solution in detail in this work and propose an AQP physical design called PASS, or Precomputation-Assisted Stratified Sampling. PASS builds a tree of partial aggregates that cover different partitions of the dataset. The leaf nodes of this tree form the strata for stratified samples. Aggregate queries whose predicates align with the partitions (or unions of partitions) are exactly answered with a depth-first search, and any partial overlaps are approximated with the stratified samples. We propose an algorithm for optimally partitioning the data into such a data structure with various practical approximation techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا