ترغب بنشر مسار تعليمي؟ اضغط هنا

Balanced ternary addition using a gated silicon nanowire

117   0   0.0 ( 0 )
 نشر من قبل Jan Mol
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the proof of principle for a ternary adder using silicon metal-on-insulator single electron transistors (SET). Gate dependent rectifying behavior of a single electron transistor results in a robust three-valued output as a function of the potential of the SET island. Mapping logical, ternary inputs to the three gates controlling the potential of the SET island allows us to perform complex, inherently ternary operations, on a single transistor.


قيم البحث

اقرأ أيضاً

We report on spectroscopy of a single dopant atom in silicon by resonant tunneling between source and drain of a gated nanowire etched from silicon on insulator. The electronic states of this dopant isolated in the channel appear as resonances in the low temperature conductance at energies below the conduction band edge. We observe the two possible charge states successively occupied by spin-up and spin-down electrons under magnetic field. The first resonance is consistent with the binding energy of the neutral $D^0$ state of an arsenic donor. The second resonance shows a reduced charging energy due to the electrostatic coupling of the charged $D^-$ state with electrodes. Excited states and Zeeman splitting under magnetic field present large energies potentially useful to build atomic scale devices.
We present a novel reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consist of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner eff ect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.
Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mod e were measured at a temperature of $20,mathrm{mK}$ for nanowires of various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the estimates obtained from the Euler-Bernoulli theory. The measured internal quality factor of the $5,mathrm{mu m}$-long resonator, $3.62times10^4$, exceeds the corresponding values of similar resonators investigated at higher temperatures. The structures presented can be used as mass sensors with an expected sensitivity $sim 6 times 10^{-20},mathrm{g},mathrm{Hz}^{-1/2}$.
We present an ultrafast all-optical gated amplifier, or transistor, consisting of a forest of ZnO nanowire lasers. A gate light pulse creates a dense electron-hole plasma and excites laser action inside the nanowires. Source light traversing the nano laser forest is amplified, partly as it is guided through the nanowires, and partly as it propagates diffusively through the forest. We have measured transmission increases at the drain up to a factor 34 for 385-nm light. Time-resolved amplification measurements show that the lasing is rapidly self-quenching, yielding pulse responses as short as 1.2 ps.
Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photodetectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typically in parallel with gated G/s ilicon dioxide (SiO$_2$)/Si areas, where the graphene is contacted. Here, we utilize scanning photocurrent measurements to investigate the spatial distribution and explain the physical origin of photocurrent generation in these devices. We observe distinctly higher photocurrents underneath the isolating region of graphene on SiO$_2$ adjacent to the Schottky junction of G/Si. A certain threshold voltage (V$_T$) is required before this can be observed, and its origins are similar to that of the threshold voltage in metal oxide semiconductor field effect transistors. A physical model serves to explain the large photocurrents underneath SiO$_2$ by the formation of an inversion layer in Si. Our findings contribute to a basic understanding of graphene / semiconductor hybrid devices which, in turn, can help in designing efficient optoelectronic devices and systems based on such 2D/3D heterojunctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا