ﻻ يوجد ملخص باللغة العربية
We present here fully optimized two-dimensional pupil apodizations for which no specific geometric constraints are put on the pupil plane apodization, apart from the shape of the aperture itself. Masks for circular and segmented apertures are displayed, with and without central obstruction and spiders. Examples of optimal masks are shown for Subaru, SPICA and JWST. Several high-contrast regions are considered with different sizes, positions, shapes and contrasts. It is interesting to note that all the masks that result from these optimizations tend to have a binary transmission profile.
We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal
We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of $10^{10}$. These new coronagraphs provide a key advance to
The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a pr
The use of interferometric nulling for the direct detection of extrasolar planets is in part limited by the extreme sensitivity of the instrumental response to tiny optical path differences between apertures. The recently proposed kernel-nuller archi
A set of pupil apodization functions for use with a vortex coronagraph on telescopes with obscured apertures is presented. We show analytically that pupil amplitudes given by real-valued Zernike polynomials offer ideal on-axis starlight cancellation