ﻻ يوجد ملخص باللغة العربية
We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of $10^{10}$. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures or segment gaps. We illustrate the technique with a design that could reach $10^{10}$ contrast level at 34,mas for a 12,m segmented telescope over a 10% bandpass centered at a wavelength $lambda_0=$500,nm. These designs can be optimized specifically for the presence of a resolved star, and in our example, for stellar angular size up to 1.1,mas. This would allow probing the vicinity of Sun-like stars located beyond 4.4,pc, therefore fully retiring this concern. If the fraction of stars with Earth-like planets is $eta_{Earth}=0.1$, with 18% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12,m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward towards enabling these science goals with future large space missions.
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as
Earlier apodized-pupil Lyot coronagraphs (APLC) have been studied and developed to enable high-contrast imaging for exoplanet detection and characterization with present-day ground-based telescopes. With the current interest in the development of the
Exoplanet imaging and spectroscopy are now routinely achieved by dedicated instruments on large ground-based observatories (e.g. Gemini/GPI, VLT/SPHERE, or Subaru/SCExAO). In addition to extreme adaptive optics (ExAO) and post-processing methods, the
The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a pr
Modern coronagraph design relies on advanced, large-scale optimization processes that require an ever increasing amount of computational resources. In this paper, we restrict ourselves to the design of Apodized Pupil Lyot Coronagraphs (APLCs). To pro