ﻻ يوجد ملخص باللغة العربية
We show the results of two dimensional general relativistic inviscid and isothermal hydrodynamical simulations comparing the behavior of co-rotating (with respect to the black hole rotation) and counter-rotating circumbinary quasi-Keplerian discs in the post merger phase of a supermassive binary black hole system. While confirming the spiral shock generation within the disc due to the combined effects of mass loss and recoil velocity of the black hole, we find that the maximum luminosity of counter-rotating discs is a factor ~(2-12) higher than in the co-rotating case, depending on the spin of the black hole. On the other hand, the luminosity peak happens ~10 days later with respect to the co-rotating case, for a binary with a total mass M~10^6 M_odot. Although the global dynamics of counter-rotating discs in the post merger phase of a merging event is very similar to that for co-rotating discs, an important difference has been found. In fact, increasing the spin of the central black hole produces more luminous co-rotating discs while less luminous counter-rotating ones.
We investigate the dynamics of a circumbinary disc that responds to the loss of mass and to the recoil velocity of the black hole produced by the merger of a binary system of supermassive black holes. We perform the first two-dimensional general rela
The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational wave (GW) signatures associated with massive black hole (MBH) binaries heading for coalescence. These detections will laun
As a powerful source of gravitational waves (GW), a supermassive black hole (SMBH) merger may be accompanied by a relativistic jet that leads to detectable electromagnetic (EM) emission. We model the propagation of post-merger jets inside a pre-merge
Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole - neutron star candi
We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitation