ترغب بنشر مسار تعليمي؟ اضغط هنا

A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition

171   0   0.0 ( 0 )
 نشر من قبل Souhaib Ben Taieb
 تاريخ النشر 2011
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-step ahead forecasting is still an open challenge in time series forecasting. Several approaches that deal with this complex problem have been proposed in the literature but an extensive comparison on a large number of tasks is still missing. This paper aims to fill this gap by reviewing existing strategies for multi-step ahead forecasting and comparing them in theoretical and practical terms. To attain such an objective, we performed a large scale comparison of these different strategies using a large experimental benchmark (namely the 111 series from the NN5 forecasting competition). In addition, we considered the effects of deseasonalization, input variable selection, and forecast combination on these strategies and on multi-step ahead forecasting at large. The following three findings appear to be consistently supported by the experimental results: Multiple-Output strategies are the best performing approaches, deseasonalization leads to uniformly improved forecast accuracy, and input selection is more effective when performed in conjunction with deseasonalization.



قيم البحث

اقرأ أيضاً

Many applications require the ability to judge uncertainty of time-series forecasts. Uncertainty is often specified as point-wise error bars around a mean or median forecast. Due to temporal dependencies, such a method obscures some information. We w ould ideally have a way to query the posterior probability of the entire time-series given the predictive variables, or at a minimum, be able to draw samples from this distribution. We use a Bayesian dictionary learning algorithm to statistically generate an ensemble of forecasts. We show that the algorithm performs as well as a physics-based ensemble method for temperature forecasts for Houston. We conclude that the method shows promise for scenario forecasting where physics-based methods are absent.
Probabilistic time-series forecasting enables reliable decision making across many domains. Most forecasting problems have diverse sources of data containing multiple modalities and structures. Leveraging information as well as uncertainty from these data sources for well-calibrated and accurate forecasts is an important challenging problem. Most previous work on multi-modal learning and forecasting simply aggregate intermediate representations from each data view by simple methods of summation or concatenation and do not explicitly model uncertainty for each data-view. We propose a general probabilistic multi-view forecasting framework CAMul, that can learn representations and uncertainty from diverse data sources. It integrates the knowledge and uncertainty from each data view in a dynamic context-specific manner assigning more importance to useful views to model a well-calibrated forecast distribution. We use CAMul for multiple domains with varied sources and modalities and show that CAMul outperforms other state-of-art probabilistic forecasting models by over 25% in accuracy and calibration.
Time series prediction with neural networks has been the focus of much research in the past few decades. Given the recent deep learning revolution, there has been much attention in using deep learning models for time series prediction, and hence it i s important to evaluate their strengths and weaknesses. In this paper, we present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction. The deep learning methods comprise simple recurrent neural networks, long short-term memory (LSTM) networks, bidirectional LSTM networks, encoder-decoder LSTM networks, and convolutional neural networks. We provide a further comparison with simple neural networks that use stochastic gradient descent and adaptive moment estimation (Adam) for training. We focus on univariate time series for multi-step-ahead prediction from benchmark time-series datasets and provide a further comparison of the results with related methods from the literature. The results show that the bidirectional and encoder-decoder LSTM network provides the best performance in accuracy for the given time series problems.
Prediction for high dimensional time series is a challenging task due to the curse of dimensionality problem. Classical parametric models like ARIMA or VAR require strong modeling assumptions and time stationarity and are often overparametrized. This paper offers a new flexible approach using recent ideas of manifold learning. The considered model includes linear models such as the central subspace model and ARIMA as particular cases. The proposed procedure combines manifold denoising techniques with a simple nonparametric prediction by local averaging. The resulting procedure demonstrates a very reasonable performance for real-life econometric time series. We also provide a theoretical justification of the manifold estimation procedure.
We advocate for a practical Maximum Likelihood Estimation (MLE) approach for regression and forecasting, as an alternative to the typical approach of Empirical Risk Minimization (ERM) for a specific target metric. This approach is better suited to ca pture inductive biases such as prior domain knowledge in datasets, and can output post-hoc estimators at inference time that can optimize different types of target metrics. We present theoretical results to demonstrate that our approach is always competitive with any estimator for the target metric under some general conditions, and in many practical settings (such as Poisson Regression) can actually be much superior to ERM. We demonstrate empirically that our method instantiated with a well-designed general purpose mixture likelihood family can obtain superior performance over ERM for a variety of tasks across time-series forecasting and regression datasets with different data distributions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا