ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity Asymmetry in gamma p -> pi+ n with FROST

63   0   0.0 ( 0 )
 نشر من قبل Steffen Strauch
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Steffen Strauch




اسأل ChatGPT حول البحث

The main objective of the FROST experiment at Jefferson Lab is the study of baryon resonances. The polarization observable E for the reaction gamma p to pi+n has been measured as part of this program. A circularly polarized tagged photon beam with energies from 0.35 to 2.35 GeV was incident on a longitudinally polarized frozen-spin butanol target. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer. Preliminary polarization data agree fairly well with present SAID and MAID partial-wave analyses at low photon energies. In most of the covered energy range, however, significant deviations are observed. These discrepancies underline the crucial importance of polarization observables to further constrain these analyses.

قيم البحث

اقرأ أيضاً

72 - D. Ho , P. Peng , C. Bass 2017
We report the first beam-target double-polarization asymmetries in the $gamma + n(p) rightarrow pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {it{E}} polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses, and have led to significant revisions for several $gamma nN^*$ resonance photo-couplings.
A measurement of the double-polarization observable $E$ for the reaction $gamma pto pi^0 p$ is reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility in Bonn using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided longitudinally-polarized protons. Circularly-polarized photons were produced via bremsstrahlung of longitudinally-polarized electrons. The data cover the photon energy range from $E_gamma =600$~MeV to $E_gamma =2310$~MeV and nearly the complete angular range. The results are compared to and have been included in recent partial wave analyses.
88 - Z. Akbar , P. Roy , S. Park 2017
The double-polarization observable $E$ was studied for the reaction $gamma pto pomega$ using the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at the Thomas Jefferson National Accelerator Facility and the longitudinally-polarized frozen-spin t arget (FROST). The observable was measured from the charged decay mode of the meson, $omegatopi^+pi^-pi^0$, using a circularly-polarized tagged-photon beam with energies ranging from the $omega$ threshold at 1.1 to 2.3 GeV. A partial-wave analysis within the Bonn-Gatchina framework found dominant contributions from the $3/2^+$ partial wave near threshold, which is identified with the sub-threshold $N(1720),3/2^+$ nucleon resonance. To describe the entire data set, which consisted of $omega$ differential cross sections and a large variety of polarization observables, further contributions from other nucleon resonances were found to be necessary. With respect to non-resonant mechanisms, $pi$ exchange in the $t$-channel was found to remain small across the analyzed energy range, while pomeron $t$-channel exchange gradually grew from the reaction threshold to dominate all other contributions above $W approx 2$ GeV.
156 - H. Kohri , S.Y. Wang , S.H. Shiu 2017
Differential cross sections and photon beam asymmetries for the gamma p -> pi+ n reaction have been measured for 0.6<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The cross sections monotonically decrease as the photon beam energy increases for 0.6<cos(theta)<0.9. However, the energy dependence of the cross sections for 0.9<cos(theta)<1 and Egamma=1.5-2.2 GeV (W=1.9-2.2 GeV) is different, which may be due to a nucleon or Delta resonance. The present cross sections agree well with the previous cross sections measured by other groups and show forward peaking, suggesting significant t-channel contributions in this kinematical region. The asymmetries are found to be positive, which can be explained by rho-exchange in the t-channel. Large positive asymmetries in the small |t| region, where the rho-exchange contribution becomes small, could be explained by introducing pi-exchange interference with the s-channel.
High statistics measurements of the photon asymmetry $mathrm{Sigma}$ for the $overrightarrow{gamma}$p$rightarrowpi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon b eam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $check{mathrm{Sigma}}$ (= $sigma_{0}mathrm{Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا