ﻻ يوجد ملخص باللغة العربية
We report DC Josephson effects observed in a microbridge prepared from an individual crystalline growth domain of $CeCoIn_5$ thin film. Josephson effects were observed by periodic voltage modulations under external magnetic field $Delta V(B)$ with the expected periodicity and by the temperature dependence of the Josephson critical current $I_c(T)$. The shape of $Delta V(B)$ was found to be asymmetric, as it is expected for microbridges. The dependence $I_c(T)$ follows the Ambegaokar-Baratoff relation, which is unexpected for microbridges. Features in the dynamical resistance curves were attributed to the periodic motion of Abricosov vortices within the microbridge.
A superconducting quantum interference device (SQUID) was prepared on a micron-sized single crystal using a selected growth domain of a thin film of $CeCoIn_5$ grown by molecular beam epitaxy. SQUID voltage oscillations of good quality were obtained
The heavy-electron superconductor CeCoIn$_5$ exhibits a puzzling precursor state above its superconducting critical temperature at $T_c$ = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons underg
We report ^{115}In nuclear magnetic resonance (NMR) measurements in the heavy-fermion superconductor CeCoIn_5 as a function of temperature in different magnetic fields applied parallel to the $(hat a, hat b)$ plane. The measurements probe a part of t
In the classical Josephson effect the phase difference across the junction is well defined, and the supercurrent is reduced only weakly by phase diffusion. For mesoscopic junctions with small capacitance the phase undergoes large quantum fluctuations
The Josephson effect is a manifestation of the macroscopic phase coherence of superconductors and superfluids. We propose that with ultracold Fermi gases one can realise a spin-asymmetric Josephson effect in which the two spin components of a Cooper