ﻻ يوجد ملخص باللغة العربية
We report ^{115}In nuclear magnetic resonance (NMR) measurements in the heavy-fermion superconductor CeCoIn_5 as a function of temperature in different magnetic fields applied parallel to the $(hat a, hat b)$ plane. The measurements probe a part of the phase diagram in the vicinity of the superconducting critical field H_{c2} where a possible inhomogeneous superconducting state, Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), is stabilized. We have identified clear NMR signatures of two phase transitions occurring in this part of the phase diagram. The first order phase transitions are characterized by the sizable discontinuity of the shift. We find that a continuous second order phase transition from the superconducting to the FFLO state occurs at temperature below which the shift becomes temperature independent. We have compiled the first phase diagram of CeCoIn_5 in the vicinity of H_{c2} from NMR data and found that it is in agreement with the one determined by thermodynamic measurements.
UCoGe is one of the few compounds showing the coexistence of ferromagnetism and superconductivity at ambient pressure. With T_Curie = 3 K and T_SC = 0.6 K it is near a quantum phase transition; the pressure needed to suppress the magnetism is slightl
We report DC Josephson effects observed in a microbridge prepared from an individual crystalline growth domain of $CeCoIn_5$ thin film. Josephson effects were observed by periodic voltage modulations under external magnetic field $Delta V(B)$ with th
The pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2 has been reinvestigated by ac-susceptibility and elastic neutron-scattering (NS) measurements performed on a small single-crystalline rod (2 mm in diameter, 6 mm in l
La1.8-xEu0.2SrxCuO4 (LESCO) is the member of the 214 family which exhibits the largest intervals among the structural, charge ordering (CO), magnetic, and superconducting transition temperatures. By using new dc transport measurements and data in the
We report an experimental determination of the dispersion of the soft phonon mode along [1,0,0] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent t