ترغب بنشر مسار تعليمي؟ اضغط هنا

The Massive Progenitor of the Possible Type II-Linear Supernova 2009hd in Messier 66

125   0   0.0 ( 0 )
 نشر من قبل Nancy Elias-Rosa
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nancy Elias-Rosa




اسأل ChatGPT حول البحث

We present observations of SN2009hd in the nearby galaxy M66. This SN is one of the closest to us in recent years but heavily obscured by dust, rendering it unusually faint in the optical, given its proximity. We find that the observed properties of SN2009hd support its classification as a possible Type II-L SN, a relatively rare subclass of CC-SNe. High-precision relative astrometry has been employed to attempt to identify a SN progenitor candidate, based on a pixel-by-pixel comparison between HST F555W and F814W images of the SN site prior to explosion and at late times. A progenitor candidate is identified in the F814W images only; this object is undetected in F555W. Significant uncertainty exists in the astrometry, such that we cannot definitively identify this object as the SN progenitor. Via insertion of artificial stars into the pre-SN HST images, we are able to constrain the progenitors properties to those of a possible supergiant, with M(F555W)0>-7.6 mag and (V-I) 0>0.99 mag. The magnitude and color limits are consistent with a luminous RSG; however, they also allow for the possibility that the star could have been more yellow than red. From a comparison with theoretical massive-star evolutionary tracks, which include rotation and pulsationally enhanced mass loss, we can place a conservative upper limit on the initial mass for the progenitor of <20 M_sun. If the actual mass of the progenitor is near the upper range allowed by our derived mass limit, then it would be consistent with that for the identified progenitors of the SNII-L 2009kr and the high-luminosity SNII-P 2008cn. The progenitors of these three SNe may possibly bridge the gap between lower-mass RSG that explode as SNeII-P and LBV, or more extreme RSG, from which the more exotic SNeII-n may arise. Very late-time imaging of the SN2009hd site may provide us with more clues regarding the true nature of its progenitor.

قيم البحث

اقرأ أيضاً

434 - N. Elias-Rosa 2009
We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 onboard the Hubble Space Telescope (HST) with SN images obtained using adaptive optics (AO) plus NIRC2 on the 10-m Keck-II telescope. Although the host galaxys substantial distance (~26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M_V = -7.8 mag) yellow supergiant with initial mass ~18-24 M_sun. This would be the first time that a SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe (SNe II-P) and the inferred initial mass estimate for one Type II-narrow SN (SN IIn).
We present the detection of the progenitor of the Type II SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the SN in the pre-explosion images was determined to within 23mas. The progenitor object was found to be consistent with a F8 supergiant star (log L/L_{odot}=4.92+/-0.20 and T_{eff}=6000+/-280K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M_{ZAMS}=13+/-3M_{odot}. The possibility of the progenitor source being a cluster is rejected, on the basis of: 1) the source is not spatially extended; 2) the absence of excess Halpha, emission; and 3) the poor fit to synthetic cluster SEDs. It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax, and suggest that a large amount of the progenitors hydrogen envelope was removed before explosion.
We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surv eys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius ~1e11 cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M_V^0 ~ -7.7 and effective temperature ~6000 K. The stars radius, ~1e13 cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitors companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17--19 Msun. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot (~1e5 K), nitrogen-rich Wolf-Rayet star progenitor.
We have identified a progenitor candidate in archival Hubble Space Telescope (HST) images for the Type Ic SN 2017ein in NGC 3938, pinpointing the candidates location via HST Target-of-Opportunity imaging of the SN itself. This would be the first iden tification of a stellar-like object as a progenitor candidate for any Type Ic supernova to date. We also present observations of SN 2017ein during the first ~49 days since explosion. We find that SN 2017ein most resembles the well-studied Type Ic SN 2007gr. We infer that SN 2017ein experienced a total visual extinction of A_V~1.0--1.9 mag, predominantly because of dust within the host galaxy. Although the distance is not well known, if this object is the progenitor, it was likely of high initial mass, ~47--48 M_sun if a single star, or ~60--80 M_sun if in a binary system. However, we also find that the progenitor candidate could be a very blue and young compact cluster, further implying a very massive (>65 M_sun) progenitor. Furthermore, the actual progenitor might not be associated with the candidate at all and could be far less massive. From the immediate stellar environment, we find possible evidence for three different populations; if the SN progenitor was a member of the youngest population, this would be consistent with an initial mass of ~57 M_sun. After it has faded, the SN should be reobserved at high spatial resolution and sensitivity, to determine whether the candidate is indeed the progenitor.
We present late-time observations of the site of the Type Ibn supernova (SN) 2006jc acquired with the Hubble Space Telescope Advanced Camera for Surveys. A faint blue source is recovered at the SN position with brightness $m_{F435W}=26.76pm0.20$, $m_ {F555W}=26.60pm0.23$ and $m_{F625W} = 26.32pm0.19$ mags, although there is no detection in a contemporaneous narrow-band $mathrm{Halpha}$ image. The spectral energy distribution of the late-time source is well fit by a stellar-like spectrum ($log T_{eff} > 3.7$ and $log L / L_{odot} > 4$) subject to only a small degree of reddening consistent with that estimated for SN~2006jc itself at early-times. The lack of further outbursts after the explosion of SN~2006jc suggests that the precursor outburst originated from the progenitor. The possibility of the source being a compact host cluster is ruled out on the basis of the sources faintness, however the possibility that the late-time source maybe an unresolved light echo originating in a shell or sphere of pre-SN dust (within a radius $1mathrm{pc}$) is also discussed. Irrespective of the nature of the late-time source, these observations rule out a luminous blue variable as a companion to the progenitor of SN~2006jc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا