ترغب بنشر مسار تعليمي؟ اضغط هنا

The observable prestellar phase of the IMF

63   0   0.0 ( 0 )
 نشر من قبل Paolo Padoan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observed similarities between the mass function of prestellar cores (CMF) and the stellar initial mass function (IMF) have led to the suggestion that the IMF is already largely determined in the gas phase. However, theoretical arguments show that the CMF may differ significantly from the IMF. In this Letter, we study the relation between the CMF and the IMF, as predicted by the IMF model of Padoan and Nordlund. We show that 1) the observed mass of prestellar cores is on average a few times smaller than that of the stellar systems they generate; 2) the CMF rises monotonically with decreasing mass, with a noticeable change in slope at approximately 3-5 solar masses, depending on mean density; 3) the selection of cores with masses larger than half their Bonnor-Ebert mass yields a CMF approximately consistent with the system IMF, rescaled in mass by the same factor as our model IMF, and therefore suitable to estimate the local efficiency of star formation, and to study the dependence of the IMF peak on cloud properties; 4) only one in five pre-brown-dwarf core candidates is a true progenitor to a brown dwarf.

قيم البحث

اقرأ أيضاً

The recent unexpected detection of terrestrial complex organic molecules in the cold (~ 10 K) gas has cast doubts on the commonly accepted formation mechanisms of these species. Standard gas-phase mechanisms are inefficient and tend to underproduce t hese molecules, and many of the key reactions involved are unconstrained. Grain-surface mechanisms, which were presented as a viable alternative, suffer from the fact that they rely on grain surface diffusion of heavy radicals, which is not possible thermally at very low temperatures. One of the simplest terrestrial complex organic molecules, methanol is believed to form on cold grain surfaces following from successive H atom additions on CO. Unlike heavier species, H atoms are very mobile on grain surfaces even at 10 K. Intermediate species involved in grain surface methanol formation by CO hydrogenation are the radicals HCO and CH3O, as well as the stable species formaldehyde H2CO. These radicals are thought to be precursors of complex organic molecules on grain surfaces. We present new observations of the HCO and CH3O radicals in a sample of prestellar cores and carry out an analysis of the abundances of the species HCO, H2CO, CH3O, and CH3OH, which represent the various stages of grain-surface hydrogenation of CO to CH3OH. The abundance ratios between the various intermediate species in the hydrogenation reaction of CO on grains are similar in all sources of our sample, HCO:H2CO:CH3O:CH3OH ~ 10:100:1:100. We argue that these ratios may not be representative of the primordial abundances on the grains but, rather, suggest that the radicals HCO and CH3O are gas-phase products of the precursors H2CO and CH3OH, respectively. Gas-phase pathways are considered and simple estimates of HCO and CH3O abundances are compared to the observations. Critical reaction rate constants, branching ratios, and intermediate species are finally identified.
75 - Q. Ma , U. Maio , B. Ciardi 2016
We study the possibility to detect and distinguish signatures of enrichment from PopIII stars in observations of PopII GRBs (GRBIIs) at high redshift by using numerical N-body/hydrodynamical simulations including atomic and molecular cooling, star fo rmation and metal spreading from stellar populations with different initial mass functions (IMFs), yields and lifetimes. PopIII and PopII star formation regimes are followed simultaneously and both a top-heavy and a Salpeter-like IMF for pristine PopIII star formation are adopted. We find that the fraction of GRBIIs hosted in a medium previously enriched by PopIII stars (PopIII-dominated) is model independent. Typical abundance ratios, such as [Si/O] vs [C/O] and [Fe/C] vs [Si/C], can help to disentangle enrichment from massive and intermediate PopIII stars, while low-mass first stars are degenerate with regular PopII generations. The properties of galaxies hosting PopIII-dominated GRBIIs are not very sensitive to the particular assumption on the mass of the first stars.
We perform a direct comparison of two state-of-the art single stellar population (SSP) models that have been used to demonstrate the non-universality of the low-mass end of the Initial Mass Function (IMF) slope. The two publi
We modify the chemo-dynamical code GEAR to simulate the impact of self-interacting dark matter on the observable quantities of 19 low mass dwarf galaxies with a variety star forming properties. We employ a relatively high, velocity independent cross- section of $sigma/m = 10$cm$^2$/g and extract, in addition to integrated quantities, the total mass density profile, the luminosity profile, the line-of-sight velocities, the chemical abundance and the star formation history. We find that despite the creation of large cores at the centre of the dark matter haloes, the impact of SIDM on the observable quantities of quenched galaxies is indiscernible, dominated mostly by the stochastic build up of the stellar matter. As such we conclude that it is impossible to make global statements on the density profile of dwarf galaxies from single or small samples. Although based mostly on quenched galaxies, this finding supports other recent work putting into question the reliability of inferred cored density profiles that are derived from observed line-of-sight velocities.
Aims. In this work we aim to estimate the lowest stellar mass that MICADO at the ELT will be able to reliably detect given a stellar density and distance. We also show that instrumental effects that will play a critical role, and report the number of young clusters that will be accessible for IMF studies in the local Universe with the ELT. Methods. We used SimCADO, the instrument simulator package for the MICADO camera, to generate observations of 56 dense stellar regions with densities similar to the cores of young stellar clusters. We placed the cluster fields at distances between 8 kpc and 5 Mpc from the Earth, implying core densities from 10^2 to 10^5 stars arcsec^-2, and determined the lowest reliably observable mass for each stellar field through point-spread function (PSF) fitting photometry. Results. Our results show that stellar densities of <10^3 stars arcsec^-2 will be easily resolvable by MICADO. The lowest reliably observable mass in the Large Magellanic Cloud will be around 0.1 Msun for clusters with densities <10^3 stars arcsec^-2. MICADO will be able to access the stellar content of the cores of all dense young stellar clusters in the Magellanic Clouds, allowing the peak and shape of the IMF to be studied in great detail outside the Milky Way. At a distance of 2 Mpc, all stars with M > 2 Msun will be resolved in fields of <10^4 stars arcsec^-2 , allowing the high-mass end of the IMF to be studied in all galaxies out to and including NGC300.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا