ترغب بنشر مسار تعليمي؟ اضغط هنا

Injection and dump considerations for a 16.5 TeV HE-LHC

130   0   0.0 ( 0 )
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Injection and beam dumping is considered for a 16.5 TeV hadron accelerator in the current LHC tunnel, with an injection energy in the range 1 - 1.3 TeV. The present systems are described and the possible upgrade scenarios investigated for higher beam rigidity. In addition to the required equipment performance, the machine protection related aspects are explored. The expected constraints on the machine layout are also given. The technological challenges for the different equipment subsystems are detailed, and areas where R&D is necessary are highlighted.



قيم البحث

اقرأ أيضاً

203 - M. Bai 2007
Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.
We report on an injection feedback scheme for the ThomX storage ring project. ThomX is a 50-MeV-electron accelerator prototype which will use Compton backscattering in a storage ring to generate a high flux of hard X-rays. Given the slow beam damping (in the ring), the injection must be performed with high accuracy to avoid large betatron oscillations. A homemade analytic code is used to compute the corrections that need to be applied before the beam injection to achieve a beam position accuracy of a few hundred micrometers in the first beam position monitors (BPMs). In order to do so the code needs the information provided by the rings diagnostic devices. The iterative feedback system has been tested using MadX simulations. Our simulations show that a performance that matches the BPMs accuracy can be achieved in less than 50 iterations in all cases. Details of this feedback algorithm, its efficiency and the simulations are discussed.
Photon beams at photon colliders are very narrow, powerful (10--15 MW) and cannot be spread by fast magnets (because photons are neutral). No material can withstand such energy density. For the ILC-based photon collider, we suggest using a 150 m long , pressurized (P ~ 4 atm) argon gas target in front of a water absorber which solves the overheating and mechanical stress problems. The neutron background at the interaction point is estimated and additionally suppressed using a 20 m long hydrogen gas target in front of the argon.
The Frascati F-Factory DAFNE has been delivering luminosity to the KLOE, DEAR and FINUDA experiments since year 2000. Since April 2004 the KLOE run has been resumed and recently peak luminosity of 1.0x1032 cm-2s-1 and integrated luminosity of 6.2 pb- 1/day have been achieved. The scientific program of the three high-energy experiments sharing DAFNE operation will be completed approximately by the end of year 2006. A scientific program for DAFNE beyond that date has not been defined yet and it is matter of discussion in the high-energy physics and accelerator physics communities. In this paper we present some future scenarios for DAFNE, discussing the expected ultimate performances of the machine as it is now and addressing the design for an energy and/or luminosity upgrade. The options presented in the following are not exhaustive and they are intended to give a glance of what is doable using the existing infrastructures.
The goal of FASER, ForwArd Search ExpeRiment at the LHC, is to discover light, weakly-interacting particles with a small and inexpensive detector placed in the far-forward region of ATLAS or CMS. A promising location in an unused service tunnel 480 m downstream of the ATLAS interaction point (IP) has been identified. Previous studies have found that FASER has significant discovery potential for new particles produced at the IP, including dark photons, dark Higgs bosons, and heavy neutral leptons. In this study, we explore a qualitatively different, `beam dump capability of FASER, in which the new particles are produced not at the IP, but through collisions in detector elements further downstream. In particular, we consider the discovery prospects for axion-like particles (ALPs) that couple to the standard model through the $a gamma gamma$ interaction. TeV-scale photons produced at the IP collide with the TAN neutral particle absorber 130 m downstream, producing ALPs through the Primakoff process, and the ALPs then decay to two photons in FASER. We show that FASER can discover ALPs with masses $m_a sim 30 - 400~text{MeV}$ and couplings $g_{agammagamma} sim 10^{-6} - 10^{-3}~text{GeV}^{-1}$, and we discuss the ALP signal characteristics and detector requirements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا