ترغب بنشر مسار تعليمي؟ اضغط هنا

A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections

143   0   0.0 ( 0 )
 نشر من قبل X. L. Kong
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, with a survey through the Large Angle and Spectrometric Coronagraph (LASCO) data from 1996 to 2009, we present 11 events with plasma blobs flowing outwards sequentially along a bright coronal ray in the wake of a coronal mass ejection. The ray is believed to be associated with the current sheet structure that formed as a result of solar eruption, and the blobs are products of magnetic reconnection occurring along the current sheet. The ray morphology and blob dynamics are investigated statistically. It is found that the apparent angular widths of the rays at a fixed time vary in a range of 2.1-6.6 (2.0-4.4) degrees with an average of 3.5 (2.9) degrees at 3 (4) Rs, respectively, and the observed durations of the events vary from 12 h to a few days with an average of 27 h. It is also found, based on the analysis of blob motions, that 58% (26) of the blobs were accelerated, 20% (9) were decelerated, and 22% (10) moved with a nearly-constant speed. Comparing the dynamics of our blobs and those that are observed above the tip of a helmet streamer, we find that the speeds and accelerations of the blobs in these two cases differ significantly. It is suggested that these differences of the blob dynamics stem from the associated magnetic reconnection involving different magnetic field configurations and triggering processes.

قيم البحث

اقرأ أيضاً

The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coron al line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.
Large-scale propagating fronts are frequently observed during solar eruptions, yet it is open whether they are waves or not, partly because the propagation is modulated by coronal structures, whose magnetic field we still cannot measure. However, whe n a front impacts coronal structures, an opportunity arises for us to look into the magnetic properties of both interacting parties in the low-$beta$ corona. Here we studied large-scale EUV fronts accompanying three coronal mass ejections (CMEs), each originating from a kinking rope-like structure in the NOAA active region (AR) 12371. These eruptions were homologous and the surrounding coronal structures remained stationary. Hence we treated the events as one observed from three different viewing angles, and found that the primary front directly associated with the CME consistently transmits through 1) a polar coronal hole, 2) the ends of a crescent-shaped equatorial coronal hole, leaving a stationary front outlining its AR-facing boundary, and 3) two quiescent filaments, producing slow and diffuse secondary fronts. The primary front also propagates along an arcade of coronal loops and slows down due to foreshortening at the far side, where local plasma heating is indicated by an enhancement in 211 {AA} (Fe XIV) but a dimming in 193 {AA} (Fe XII) and 171 {AA} (Fe IX). The strength of coronal magnetic field is therefore estimated to be $sim,$2 G in the polar coronal hole and $sim,$4 G in the coronal arcade neighboring the active region. These observations substantiate the wave nature of the primary front and shed new light on slow fronts.
Coronal Mass Ejections (CMEs) may have major importance for planetary and stellar evolution. Stellar CME parameters, such as mass and velocity, have yet not been determined statistically. So far only a handful of stellar CMEs has been detected mainly on dMe stars using spectroscopic observations. We therefore aim for a statistical determination of CMEs of solar-like stars by using spectroscopic data from the ESO phase 3 and Polarbase archives. To identify stellar CMEs we use the Doppler signal in optical spectral lines being a signature of erupting filaments which are closely correlated to CMEs. We investigate more than 3700 hours of on-source time of in total 425 dF-dK stars. We find no signatures of CMEs and only few flares. To explain this low level of activity we derive upper limits for the non detections of CMEs and compare those with empirically modelled CME rates. To explain the low number of detected flares we adapt a flare power law derived from EUV data to the H{alpha} regime, yielding more realistic results for H{alpha} observations. In addition we examine the detectability of flares from the stars by extracting Sun-as-a-star H{alpha} light curves. The extrapolated maximum numbers of observable CMEs are below the observationally determined upper limits, which indicates that the on-source times were mostly too short to detect stellar CMEs in H{alpha}. We conclude that these non detections are related to observational biases in conjunction with a low level of activity of the investigated dF-dK stars.
Context: Metric type II bursts are the most direct diagnostic of shock waves in the solar corona. Aims: There are two main competing views about the origin of coronal shocks: that they originate in either blast waves ignited by the pressure pulse o f a flare or piston-driven shocks due to coronal mass ejections (CMEs). We studied three well-observed type II bursts in an attempt to place tighter constraints on their origins. Methods: The type II bursts were observed by the ARTEMIS radio spectrograph and imaged by the Nanc{c}ay Radioheliograph (NRH) at least at two frequencies. To take advantage of projection effects, we selected events that occurred away from disk center. Results: In all events, both flares and CMEs were observed. In the first event, the speed of the shock was about 4200 km/s, while the speed of the CME was about 850 km/s. This discrepancy ruled out the CME as the primary shock driver. The CME may have played a role in the ignition of another shock that occurred just after the high speed one. A CME driver was excluded from the second event as well because the CMEs that appeared in the coronagraph data were not synchronized with the type II burst. In the third event, the kinematics of the CME which was determined by combining EUV and white light data was broadly consistent with the kinematics of the type II burst, and, therefore, the shock was probably CME-driven. Conclusions: Our study demonstrates the diversity of conditions that may lead to the generation of coronal shocks.
With the global view and high-cadence observations from SDO/AIA and STEREO, many spatially separated solar eruptive events appear to be coupled. However, the mechanisms for sympathetic events are still largely unknown. In this study, we investigate t he impact of an erupting flux rope on surrounding solar structures through large-scale magnetic coupling. We build a realistic environment of the solar corona on 2011 February 15 using a global magnetohydrodynamics (MHD) model and initiate coronal mass ejections (CMEs) in active region (AR) 11158 by inserting Gibson-Low analytical flux ropes. We show that a CMEs impact on the surrounding structures depends not only on the magnetic strength of these structures and their distance to the source region, but also on the interaction between the CME with the large-scale magnetic field. Within the CME expansion domain where the flux rope field directly interacts with the solar structures, expansion-induced reconnection often modifies the overlying field, thereby increasing the decay index. This effect may provide a primary coupling mechanism underlying the sympathetic eruptions. The magnitude of the impact is found to depend on the orientation of the erupting flux rope, with the largest impacts occurring when the flux rope is favorably oriented for reconnecting with the surrounding regions. Outside the CME expansion domain, the influence of the CME is mainly through field line compression or post-eruption relaxation. Based on our numerical experiments, we discuss a way to quantify the eruption impact, which could be useful for forecasting purposes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا