ترغب بنشر مسار تعليمي؟ اضغط هنا

On the relationship of shock waves to flares and coronal mass ejections

140   0   0.0 ( 0 )
 نشر من قبل Alexander Nindos
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Metric type II bursts are the most direct diagnostic of shock waves in the solar corona. Aims: There are two main competing views about the origin of coronal shocks: that they originate in either blast waves ignited by the pressure pulse of a flare or piston-driven shocks due to coronal mass ejections (CMEs). We studied three well-observed type II bursts in an attempt to place tighter constraints on their origins. Methods: The type II bursts were observed by the ARTEMIS radio spectrograph and imaged by the Nanc{c}ay Radioheliograph (NRH) at least at two frequencies. To take advantage of projection effects, we selected events that occurred away from disk center. Results: In all events, both flares and CMEs were observed. In the first event, the speed of the shock was about 4200 km/s, while the speed of the CME was about 850 km/s. This discrepancy ruled out the CME as the primary shock driver. The CME may have played a role in the ignition of another shock that occurred just after the high speed one. A CME driver was excluded from the second event as well because the CMEs that appeared in the coronagraph data were not synchronized with the type II burst. In the third event, the kinematics of the CME which was determined by combining EUV and white light data was broadly consistent with the kinematics of the type II burst, and, therefore, the shock was probably CME-driven. Conclusions: Our study demonstrates the diversity of conditions that may lead to the generation of coronal shocks.



قيم البحث

اقرأ أيضاً

We report on the spatial relationship between solar flares and coronal mass ejections (CMEs) observed during 1996-2005 inclusive. We identified 496 flare-CME pairs considering limb flares (distance from central meridian > 45 deg) with soft X-ray flar e size > C3 level. The CMEs were detected by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). We investigated the flare positions with respect to the CME span for the events with X-class, M-class, and C-class flares separately. It is found that the most frequent flare site is at the center of the CME span for all the three classes, but that frequency is different for the different classes. Many X-class flares often lie at the center of the associated CME, while C-class flares widely spread to the outside of the CME span. The former is different from previous studies, which concluded that no preferred flare site exists. We compared our result with the previous studies and conclude that the long-term LASCO observation enabled us to obtain the detailed spatial relation between flares and CMEs. Our finding calls for a closer flare-CME relationship and supports eruption models typified by the CSHKP magnetic reconnection model.
231 - Y. Chen , H. Q. Song , B. Li 2010
Between July 5th and July 7th 2004, two intriguing fast coronal mass ejection(CME)-streamer interaction events were recorded by the Large Angle and Spectrometric Coronagraph (LASCO). At the beginning of the events, the streamer was pushed aside from their equilibrium position upon the impact of the rapidly outgoing and expanding ejecta; then, the streamer structure, mainly the bright streamer belt, exhibited elegant large scale sinusoidal wavelike motions. The motions were apparently driven by the restoring magnetic forces resulting from the CME impingement, suggestive of magnetohydrodynamic kink mode propagating outwards along the plasma sheet of the streamer. The mode is supported collectively by the streamer-plasma sheet structure and is therefore named streamer wave in the present study. With the white light coronagraph data, we show that the streamer wave has a period of about 1 hour, a wavelength varying from 2 to 4 solar radii, an amplitude of about a few tens of solar radii, and a propagating phase speed in the range 300 to 500 km s$^{-1}$. We also find that there is a tendancy for the phase speed to decline with increasing heliocentric distance. These observations provide good examples of large scale wave phenomena carried by coronal structures, and have significance in developing seismological techniques for diagnosing plasma and magnetic parameters in the outer corona.
In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M and X-class flare eve nts observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission. Our findings are: (1) The sum of the mean nonthermal energy of flare-accelerated particles ($E_{mathrm{nt}}$), the energy of direct heating ($E_{mathrm{dir}}$), and the energy in coronal mass ejections ($E_{mathrm{CME}}$), which are the primary energy dissipation processes in a flare, is found to have a ratio of $(E_{mathrm{nt}}+E_{mathrm{dir}}+ E_{mathrm{CME}})/E_{mathrm{mag}} = 0.87 pm 0.18$, compared with the dissipated magnetic free energy $E_{mathrm{mag}}$, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs; (2) The energy partition of the dissipated magnetic free energy is: $0.51pm0.17$ in nonthermal energy of $ge 6$ keV electrons, $0.17pm0.17$ in nonthermal $ge 1$ MeV ions, $0.07pm0.14$ in CMEs, and $0.07pm0.17$ in direct heating; (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model; (4) The bolometric luminosity in white-light flares is comparable with the thermal energy in soft X-rays (SXR); (5) Solar Energetic Particle (SEP) events carry a fraction $approx 0.03$ of the CME energy, which is consistent with CME-driven shock acceleration; and (6) The warm-target model predicts a lower limit of the low-energy cutoff at $e_c approx 6$ keV, based on the mean differential emission measure (DEM) peak temperature of $T_e=8.6$ MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.
Using high time cadence images from the STEREO EUVI, COR1 and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 CMEs in comparison with associated flares and filament eruptions. We found that CMEs asso ciated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events which were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration, and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME accleration ends after the SXR peak time (for 77% of the events). In ~60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than pm5 min, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا