ﻻ يوجد ملخص باللغة العربية
We report on atomic ordering of B-site transition-metals and magnetic properties of epitaxial La2CrFeO6 double-perovskite films grown by pulsed-laser deposition under various conditions. The highest ordered sample exhibited a fraction of antisite-disorder of only 0.05 and a saturation magnetization of ~2mu_{B} per formula unit at 5 K. The result is consistent with the antiferromagnetic ordering of local spin moment (3d^{3}_{downarrow}3d^{5}_{uparrow}; S = -3/2+5/2 = 1). Therefore, the magnetic ground state of La2CrFeO6 double-perovskite that has been long debate is unambiguously revealed to be ferrimagnetic. Our results present a wide opportunity to explore novel magnetic properties of binary transition-metal perovskites upon epitaxial stabilization of the ordered phase.
We show that a superstructure of antiferromagnetically interacting Fe$^{3+}$ ($S=5/2$) ions in double perovskites AFe$_{1/2}$M$_{1/2}$O$_{3}$ exhibits a ferrimagnetic ordering below $T_{fe} approx 5.6J_1$ ($J_1/k_B sim 50$~K), which is close to room
Anionic ordering is a promising route to engineer physical properties in functional heteroanionic materials. A central challenge in the study of anion-ordered compounds lies in developing robust synthetic strategies to control anion occupation and in
The electronic and magnetic properties of monoclinic double perovskite Sr$_2$CeIrO$_6$ were examined based on both experiments and first-principles density functional theory calculations. From the calculations we conclude that low-spin-state Ir$^{4+}
The non-stoichiometric double perovskite oxide La2Ni1.19Os0.81O6 was synthesized by solid state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. La2Ni1.19Os0.81O6 crystallizes in the monoclin
In this work, we use density functional theory calculations to demonstrate how spontaneous electric polarizations can be induced textit{via} a hybrid improper ferroelectric mechanism in iodide perovskites, a family well-known to display solar-optimal