ترغب بنشر مسار تعليمي؟ اضغط هنا

Manipulating optical signals at sub-wavelength scale by planar arrays of metallic nanospheres: Towards plasmonic interference devices

155   0   0.0 ( 0 )
 نشر من قبل Andrey V. Malyshev
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that interference can be the principle of operation of an all-optical switch and other nanoscale plasmonic interference devices (PIDs). The optical response of two types of planar plasmonic waveguides is studied theoretically: bent chains and Y-shaped configurations of closely-spaced metallic nanospheres. We study symmetric Y-shape arrays as an example of an all-optical switch and demonstrate that effective phase- and amplitude-sensitive control of the output signal can be achieved due to interference effects.



قيم البحث

اقرأ أيضاً

We present a single-exposure fabrication technique for a very large array of microscopic air-bridges using a tri-layer resist process with electron-beam lithography. The technique is capable of forming air-bridges with strong metal-metal or metal-sub strate connections. This was demonstrated by its application in an electron tunnelling device consisting of 400 identical surface gates for defining quantum wires, where the air-bridges are used as suspended connections for the surface gates. This technique enables us to create a large array of uniform one-dimensional channels that are open at both ends. In this article, we outline the details of the fabrication process, together with a study and the solution of the challenges present in the development of the technique, which includes the use of water-IPA (isopropyl alcohol) developer, calibration of resist thickness and numerical simulation of the development.
We report experiments demonstrating Quantum Interference Control (QuIC) based on two nonlinear optical absorption processes in semiconductors. We use two optical beams of frequencies $omega$ and $3omega /2$ incident on AlGaAs and measure the injectio n current due to the interference between 2- and 3-photon absorption processes. We analyze the dependence of the injection current on the intensities and phases of the incident fields.
Filming and controlling plasmons at buried interfaces with nanometer (nm) and femtosecond (fs) resolution has yet to be achieved and is critical for next generation plasmonic/electronic devices. In this work, we use light to excite and shape a plasmo nic interference pattern at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is filmed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at approximately 0.3c, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. These results, demonstrating dynamical imaging with PINEM, pave the way for the fs/nm visualization and control of plasmonic fields in advanced heterostructures based on novel 2D materials such as graphene, MoS$_2$, and ultrathin metal films.
Nanoplasmonic systems combined with optically-active two-dimensional materials provide intriguing opportunities to explore and control light-matter interactions at extreme sub-wavelength lengthscales approaching the exciton Bohr radius. Here, we pres ent room- and cryogenic-temperature investigations of light-matter interactions between an MoSe$_2$ monolayer and individual lithographically defined gold dipole nanoantennas having sub-10 nm feed gaps. By progressively tuning the nanoantenna size, their dipolar resonance is tuned relative to the A-exciton transition in a proximal MoSe$_2$ monolayer achieving a total tuning of $sim 130;mathrm{meV}$. Differential reflectance measurements performed on $> 100$ structures reveal an apparent avoided crossing between exciton and dipolar mode and an exciton-plasmon coupling constant of $g= 55;mathrm{meV}$, representing $g/(hbaromega_X)geq3%$ of the transition energy. This places our hybrid system in the intermediate-coupling regime where spectra exhibit a characteristic Fano-like shape, indicative of the interplay between pronounced light-matter coupling and significant damping. We also demonstrate active control of the optical response by varying the polarization of the excitation light to programmably suppress coupling to the dipole mode. We further study the emerging optical signatures of the monolayer localized at dipole nanoantennas at $10;mathrm{K}$. Our findings represent a key step towards realizing non-linear photonic devices based on 2D materials with potential for low-energy and ultrafast performance.
A systematic review, covering fabrication of nanoscale patterns by laser interference lithography (LIL) and their applications for optical devices are provided. LIL is a patterning method with simple, quick process over a large area without using a m ask. LIL is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with LIL are the platform for further fabrication of nanostructures and growth of functional materials which are the building blocks for devices. Demonstration of optical and photonic devices by LIL is reviewed such as directed nano photonics and surface plasmon resonance (SPR) or large area membrane reflectors and anti-reflectors. Perspective on future directions for LIL and emerging applications in other fields are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا