ﻻ يوجد ملخص باللغة العربية
The validation and parallel implementation of a numerical method for the solution of the time-dependent Dirac equation is presented. This numerical method is based on a split operator scheme where the space-time dependence is computed in coordinate space using the method of characteristics. Thus, most of the steps in the splitting are calculated exactly, making for a very efficient and unconditionally stable method. We show that it is free from spurious solutions related to the fermion-doubling problem and that it can be parallelized very efficiently. We consider a few simple physical systems such as the time evolution of Gaussian wave packets and the Klein paradox. The numerical results obtained are compared to analytical formulas for the validation of the method.
We develop an approach to solving numerically the time-dependent Schrodinger equation when it includes source terms and time-dependent potentials. The approach is based on the generalized Crank-Nicolson method supplemented with an Euler-MacLaurin exp
Two numerical methods are used to evaluate the relativistic spectrum of the two-centre Coulomb problem (for the $H_{2}^{+}$ and $Th_{2}^{179+}$ diatomic molecules) in the fixed nuclei approximation by solving the single particle time-independent Dira
A theoretical study of the intense-field multiphoton ionization of hydrogenlike systems is performed by solving the time-dependent Dirac equation within the dipole approximation. It is shown that the velocity-gauge results agree to the ones in length
We propose an improvement of the basis for the solution of the stationary two-centre Dirac equation in Cassini coordinates using the finite-basis-set method presented in Ref. [1]. For the calculations in Ref. [1], we constructed the basis for approxi
We examine the performance of various time propagation schemes using a one-dimensional model of the hydrogen atom. In this model the exact Coulomb potential is replaced by a soft-core interaction. The model has been shown to be a reasonable represent