ﻻ يوجد ملخص باللغة العربية
We extract the isovector tensor nucleon form factors, which play an important role in understanding the transverse spin structure of the nucleon when related to the quark helicity-flip generalized parton distributions via their first moments. We employ the light-cone QCD sum rules to leading order in QCD and include distribution amplitudes up to twist 6 in order to calculate the three tensor form factors $H_T$, $E_T$ and $tilde{H}_T$. Our results agree well with those from other approaches in the low and high momentum-transfer regions.
The nucleon electromagnetic form factors are calculated in light cone QCD sum rules framework using the most general form of the nucleon interpolating current. Using two forms of the distribution amplitudes (DAs), predictions for the form factors are
We derive light-cone sum rules for the electromagnetic nucleon form factors including the next-to-leading-order corrections for the contribution of twist-three and twist-four operators and a consistent treatment of the nucleon mass corrections. The e
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a
First principles calculations of the form factors of baryon excitations are now becoming accessible through advances in Lattice QCD techniques. In this paper, we explore the utility of the parity-expanded variational analysis (PEVA) technique in calc