ترغب بنشر مسار تعليمي؟ اضغط هنا

Net-proton probability distribution in heavy ion collisions

174   0   0.0 ( 0 )
 نشر من قبل Frithjof Karsch
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute net-proton probability distributions in heavy ion collisions within the hadron resonance gas model. The model results are compared with data taken by the STAR Collaboration in Au-Au collisions at sqrt(s_{NN})= 200 GeV for different centralities. We show that in peripheral Au-Au collisions the measured distributions, and the resulting first four moments of net-proton fluctuations, are consistent with results obtained from the hadron resonance gas model. However, data taken in central Au-Au collisions differ from the predictions of the model. The observed deviations can not be attributed to uncertainties in model parameters. We discuss possible interpretations of the observed deviations.



قيم البحث

اقرأ أيضاً

We explore net charge probability distributions in heavy ion collisions within the hadron resonance gas model. The distributions for strangeness, electric charge and baryon number are derived. We show that, within this model, net charge probability d istributions and the resulting fluctuations can be computed directly from the measured yields of charged and multi-charged hadrons. The influence of multi-charged particles and quantum statistics on the shape of the distribution is examined. We discuss the properties of the net proton distribution along the chemical freeze-out line. The model results presented here can be compared with data at RHIC energies and at the LHC to possibly search for the relation between chemical freeze-out and QCD cross-over lines in heavy ion collisions.
We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5% central Au+Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kin ds of possible baseline measures. These baseline measures correspond to assuming that the proton and anti-proton distributions, follow Poisson statistics, Binomial statistics, obtained from a transport model calculation and from a hadron resonance gas model. The higher order cumulant net-proton data corresponding to the center of mass energies ($sqrt{s_{NN}}$) of 19.6 and 27 GeV are observed to deviate from all the baseline measures studied. The deviations are predominantly due to the difference in shape of the proton distributions between data and those obtained in the baseline measures. We also present a detailed study on the relevance of the independent production approach as a baseline for comparison with the measurements at various beam energies. Our studies points to the need for a proper comparison of the experimental measurements to QCD calculations in order to extract the exact physics process that leads to deviation of the data from the baselines presented.
We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand canonical ensemble we expl icitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central ($bleq 2.75$ fm) Pb+Pb/Au+Au collisions from $E_{lab}=2A$ GeV to $sqrt{s_{NN}}=200$ GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low $sqrt{s_{NN}}$.
267 - Alejandro Ayala 2009
The spin alignment matrix element rho_{00} for the vector mesons K^{*0} and phi(1020) has been measured in RHIC at central rapidities. These measurements are consistent with the absence of polarization with respect to the reaction plane in mid-centra l Au + Au collisions whereas, when measured with respect to the production plane in the same reactions and in p + p collisions, a non-vanishing and p_perp-dependent rho_{00} is found. We show that this behavior can be understood in a simple model of vector meson production where the spin of their constituent quarks is oriented during hadronization as the result of Thomas precession.
220 - J. Cleymans , S. Kabana , I. Kraus 2011
One of the striking features of particle production at high beam energies is the near equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In par ticular, we quantify explicitly the energy dependence of the approach to matter/antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter like antihypernuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا