ﻻ يوجد ملخص باللغة العربية
We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central ($bleq 2.75$ fm) Pb+Pb/Au+Au collisions from $E_{lab}=2A$ GeV to $sqrt{s_{NN}}=200$ GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low $sqrt{s_{NN}}$.
We compute net-proton probability distributions in heavy ion collisions within the hadron resonance gas model. The model results are compared with data taken by the STAR Collaboration in Au-Au collisions at sqrt(s_{NN})= 200 GeV for different central
We study the variance and kurtosis of the net-baryon number in a fluid dynamical model for heavy-ion collisions. It is based on an effective chiral model with dilatons for the strong coupling regime of QCD. Taking into account spinodal instabilities,
A hybrid (hydrodynamics + hadronic transport) theoretical framework is assembled to model the bulk dynamics of relativistic heavy-ion collisions at energies accessible in the Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC
Taking doubly charged particles, positive-negative charge pair production and the effects of volume fluctuations into account, the Poisson baseline of the fluctuations of net-charge is studied. Within the Poisson baseline, the cumulants of net-charge
We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5% central Au+Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kin