ﻻ يوجد ملخص باللغة العربية
The imprint of Baryonic Acoustic Oscillations (BAO) on the matter power spectrum can be constrained using the neutral hydrogen density in the intergalactic medium as a tracer of the matter density. One of the goals of the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) is to derive the Hubble expansion rate and the angular scale from the BAO signal in the IGM. To this aim, the Lyman-alpha forest of 10^5 quasars will be observed in the redshift range 2.2<z<3.5 and over 10,000 deg^2. We simulated the BOSS QSO survey to estimate the statistical accuracy on the BAO scale determination provided by such a large scale survey. In particular, we discuss the effect of the poorly constrained estimate of the unabsorbed intrinsic quasar spectrum. The volume of current N-body simulations being too small for such studies, we resorted to Gaussian random field (GRF) simulations. We validated the use of GRFs by comparing the output of GRF simulations with that of the Horizon N-body simulation with the same initial conditions. Realistic mock samples of QSO Lyman-alpha forest were generated; their power spectrum was computed and fitted to obtain the BAO scale. The rms of the results for 100 different simulations provides an estimate of the statistical error expected from the BOSS survey. We confirm the results from Fisher matrix estimate. In the absence of error on the unabsorbed quasar spectrum, the BOSS quasar survey should measure the BAO scale with an error of the order of 2.3%, or the transverse and radial BAO scales separately with errors of the order of 6.8% and 3.9%, respectively. The significance of the BAO detection is assessed by an average Deltachi^2=17 but for individual realizations Deltachi^2 ranges from 2 t o 35. The error on the unabsorbed quasar spectrum increases the error on the BAO scale by 10 to 20% and results in a sub percent bias.
Several interesting Dark Matter (DM) models invoke a dark sector leading to two types of relic particles, possibly interacting with each other: non-relativistic DM, and relativistic Dark Radiation (DR). These models have interesting consequences for
Reconstruction techniques for intrinsic quasar continua are crucial for the precision study of Lyman-$alpha$ (Ly-$alpha$) and Lyman-$beta$ (Ly-$beta$) transmission at $z>5.0$, where the $lambda<1215 A$ emission of quasars is nearly completely absorbe
We propose a new method for fitting the full-shape of the Lyman-$alpha$ (Ly$alpha$) forest three-dimensional (3D) correlation function in order to measure the Alcock-Paczynski (AP) effect. Our method preserves the robustness of baryon acoustic oscill
The statistical power of Lyman-${alpha}$ forest Baryon Acoustic Oscillation (BAO) measurements is set to increase significantly in the coming years as new instruments such as the Dark Energy Spectroscopic Instrument deliver progressively more constra
We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Ly{alpha} forest correlations useful for studying the