ﻻ يوجد ملخص باللغة العربية
We propose a new method for fitting the full-shape of the Lyman-$alpha$ (Ly$alpha$) forest three-dimensional (3D) correlation function in order to measure the Alcock-Paczynski (AP) effect. Our method preserves the robustness of baryon acoustic oscillations (BAO) analyses, while also providing extra cosmological information from a broader range of scales. We compute idealized forecasts for the Dark Energy Spectroscopic Instrument (DESI) using the Ly$alpha$ auto-correlation and its cross-correlation with quasars, and show how this type of analysis improves cosmological constraints. The DESI Ly$alpha$ BAO analysis is expected to measure $H(z_mathrm{eff})r_mathrm{d}$ and $D_mathrm{M}(z_mathrm{eff})/r_mathrm{d}$ with a precision of $sim0.9%$ each, where $H$ is the Hubble parameter, $r_mathrm{d}$ is the comoving BAO scale, $D_mathrm{M}$ is the comoving angular diameter distance and the effective redshift of the measurement is $z_mathrm{eff}simeq2.3$. By fitting the AP parameter from the full shape of the two correlations, we show that we can obtain a precision of $sim0.5-0.6%$ on each of $H(z_mathrm{eff})r_mathrm{d}$ and $D_mathrm{M}(z_mathrm{eff})/r_mathrm{d}$. Furthermore, we show that a joint full-shape analysis of the Ly$alpha$ auto-correlation and its cross-correlation with quasars can measure the linear growth rate times the amplitude of matter fluctuations in spheres of $8;h^{-1}$Mpc, $fsigma_8(z_mathrm{eff})$. Such an analysis could provide the first ever measurement of $fsigma_8(z_mathrm{eff})$ at redshift $z_mathrm{eff}>2$. By combining this with the quasar auto-correlation in a joint analysis of the three high-redshift two-point correlation functions, we show that DESI could be able to measure $fsigma_8(z_mathrm{eff}simeq2.3)$ with a precision of $5-12%$, depending on the smallest scale fitted.
The statistical power of Lyman-${alpha}$ forest Baryon Acoustic Oscillation (BAO) measurements is set to increase significantly in the coming years as new instruments such as the Dark Energy Spectroscopic Instrument deliver progressively more constra
We use the probability distribution function (PDF) of the lya forest flux at z=2-3, measured from high-resolution UVES/VLT data, and hydrodynamical simulations to obtain constraints on cosmological parameters and the thermal state of the intergalacti
Absorption between the rest-frame wavelengths of 973 and 1026 Angstroms in quasar spectra arises from two sources (apart from occasional metals): one is due to Lyman-alpha (Lya) absorption by materials at a low redshift, and the other from Lyman-beta
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $Lambda$CDM model, using the one-dimensional Ly$alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) fr
The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyman-alpha forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitational lensing