ترغب بنشر مسار تعليمي؟ اضغط هنا

A compact entanglement distillery

135   0   0.0 ( 0 )
 نشر من قبل Animesh Datta
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale quantum-correlated networks could transform technologies ranging from communications and cryptography to computation, metrology, and simulation of novel materials. Critical to achieving such quantum enhancements is distributing high-quality entanglement between distant nodes. This is made possible in the unavoidable presence of decoherence by entanglement distillation. However, curre

قيم البحث

اقرأ أيضاً

140 - M.S.Kim , W. Son , V. Bu{v{z}}ek 2001
A beam splitter is a simple, readily available device which can act to entangle the output optical fields. We show that a necessary condition for the fields at the output of the beam splitter to be entangled is that the pure input states exhibit nonc lassical behavior. We generalize this proof for arbitrary (pure or impure) Gaussian input states. Specifically, nonclassicality of the input Gaussian fields is a necessary condition for entanglement of the field modes with the help of the beam splitter. We conjecture that this is a general property of the beam splitter: Nonclassicality of the inputs is a necessary condition for entangling fields in the beam splitter.
Measures of entanglement can be employed for the analysis of numerous quantum information protocols. Due to computational convenience, logarithmic negativity is often the choice in the case of continuous variable systems. In this work, we analyse a c ontinuous variable measurement-based entanglement distillation experiment using a collection of entanglement measures. This includes: logarithmic negativity, entanglement of formation, distillable entanglement, relative entropy of entanglement, and squashed entanglement. By considering the distilled entanglement as a function of the success probability of the distillation protocol, we show that the logarithmic negativity surpasses the bound on deterministic entanglement distribution at a relatively large probability of success. This is in contrast to the other measures which would only be able to do so at much lower probabilities, hence demonstrating that logarithmic negativity alone is inadequate for assessing the performance of the distillation protocol. In addition to this result, we also observed an increase in the distillable entanglement by making use of upper and lower bounds to estimate this quantity. We thus demonstrate the utility of these theoretical tools in an experimental setting.
The paper reports on experimental diagnostics of entanglement swapping protocol by means of collective entanglement witness. Our approach is suitable to detect disturbances occurring in the preparation of quantum states, quantum communication channel and imperfect Bell-state projection. More specifically we demonstrate that our method can distinguish disturbances such as depolarization, phase-damping, amplitude-damping and imperfect Bell-state measurement by observing four probabilities and estimating collective entanglement witness. Since entanglement swapping is a key procedure for quantum repeaters, quantum relays, device-independent quantum communications or entanglement assisted error correction, this can aid in faster and practical resolution of quality-of-transmission related problems as our approach requires less measurements then other means of diagnostics.
The most general quantum object that can be shared between two distant parties is a bipartite channel, as it is the basic element to construct all quantum circuits. In general, bipartite channels can produce entangled states, and can be used to simul ate quantum operations that are not local. While much effort over the last two decades has been devoted to the study of entanglement of bipartite states, very little is known about the entanglement of bipartite channels. In this work, we rigorously study the entanglement of bipartite channels as a resource theory of quantum processes. We present an infinite and complete family of measures of dynamical entanglement, which gives necessary and sufficient conditions for convertibility under local operations and classical communication. Then we focus on the dynamical resource theory where free operations are positive partial transpose (PPT) superchannels, but we do not assume that they are realized by PPT pre- and post-processing. This leads to a greater mathematical simplicity that allows us to express all resource protocols and the relevant resource measures in terms of semi-definite programs. Along the way, we generalize the negativity from states to channels, and introduce the max-logarithmic negativity, which has an operational interpretation as the exact asymptotic entanglement cost of a bipartite channel. Finally, we use the non-positive partial transpose (NPT) resource theory to derive a no-go result: it is impossible to distill entanglement out of bipartite PPT channels under any sets of free superchannels that can be used in entanglement theory. This allows us to generalize one of the long-standing open problems in quantum information - the NPT bound entanglement problem - from bipartite states to bipartite channels. It further leads us to the discovery of bound entangled POVMs.
Entanglement concurrence has been widely used for featuring entanglement in quantum experiments. As an entanglement monotone it is related to specific quantum Tsallis entropy. Our goal in this paper is to propose a new parameterized bipartite entangl ement monotone which is named as $q$-concurrence inspired by general Tsallis entropy. We derive an analytical lower bound for the $q$-concurrence of any bipartite quantum entanglement state by employing positive partial transposition criterion and realignment criterion, which shows an interesting relationship to the strong separability criteria. The new entanglement monotone is used to characterize bipartite isotropic states. Finally, we provide a computational method to estimate the $q$-concurrence for any entanglement by superposing two bipartite pure states. It shows that the superposition operations can at most increase one ebit for the $q$-concurrence in the case that the two states being superposed are bi-orthogonal or one-sided orthogonal. These results reveal a series of new phenomena about the entanglement, which may be interesting in quantum communication and quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا