ﻻ يوجد ملخص باللغة العربية
Measures of entanglement can be employed for the analysis of numerous quantum information protocols. Due to computational convenience, logarithmic negativity is often the choice in the case of continuous variable systems. In this work, we analyse a continuous variable measurement-based entanglement distillation experiment using a collection of entanglement measures. This includes: logarithmic negativity, entanglement of formation, distillable entanglement, relative entropy of entanglement, and squashed entanglement. By considering the distilled entanglement as a function of the success probability of the distillation protocol, we show that the logarithmic negativity surpasses the bound on deterministic entanglement distribution at a relatively large probability of success. This is in contrast to the other measures which would only be able to do so at much lower probabilities, hence demonstrating that logarithmic negativity alone is inadequate for assessing the performance of the distillation protocol. In addition to this result, we also observed an increase in the distillable entanglement by making use of upper and lower bounds to estimate this quantity. We thus demonstrate the utility of these theoretical tools in an experimental setting.
Generating entanglement between more parties is one of the central tasks and challenges in the backdrop of building quantum technologies. Here we propose a measurement-based protocol for producing multipartite entangled states which can be later fed
The goal of entanglement distillation is to turn a large number of weakly entangled states into a smaller number of highly entangled ones. Practical entanglement distillation schemes offer a tradeoff between the fidelity to the target state, and the
The phenomenon of quantum entanglement marks one of the furthest departures from classical physics and is indispensable for quantum information processing. Despite its fundamental importance, the distribution of entanglement over long distances troug
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistic
A recently proposed purification method, in which the Zeno-like measurements of a subsystem can bring about a distillation of another subsystem in interaction with the former, is utilized to yield entangled states between distant systems. It is shown