ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for Lyman Break Galaxies in the CDF-S Using Swift UVOT

47   0   0.0 ( 0 )
 نشر من قبل Antara Basu-Zych
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) While the Swift satellite is primarily designed to study gamma-ray bursts, its ultraviolet and optical imaging and spectroscopy capabilities are also being used for a variety of scientific programs. In this study, we use the UV/Optical Telescope (UVOT) instrument aboard Swift to discover 0.5<z<2 Lyman break galaxies (LBGs). UVOT has covered ~266 arcmin^2 at >60ks exposure time, achieving a limiting magnitude of u<24.5, in the Chandra Deep Field South (CDF-S). Applying UVOT near-ultraviolet color selection, we select 50 UV-dropouts from this UVOT CDF-S data. We match the selected sources with available multiwavelength data from GOODS-South, MUSYC, and COMBO-17 to characterize the spectral energy distributions for these galaxies and determine stellar masses, star formation rates (SFRs), and dust attenuations. We compare these properties for LBGs selected in this paper versus z~3 LBGs and other CDF-S galaxies in the same redshift range (0.5<z<2), identified using photometric redshift techniques. The z~1 LBGs have slightly lower stellar masses compared to z~3 LBGs and slightly higher stellar masses compared to the z~1 CDF-S galaxies. Similarly, our sample of z~1 LBGs has SFRs (derived using both ultraviolet and infrared data, where available) nearly an order of magnitude lower than z~3 LBGs but slightly higher than the comparison z~1 sample of CDF-S galaxies. We find that our z~1 UV-dropouts have A_FUV higher than z~3 LBGs, but is similar to the distribution of dust attenuations in the other CDF-S galaxies. Using the GOODS-South multiwavelength catalog of galaxies, we simulate a larger and fainter sample of LBGs to compare their properties with those of the UVOT-selected LBG sample. We conclude that UVOT can be useful for finding and studying the bright end of 0.5<z<2.0 LBGs.

قيم البحث

اقرأ أيضاً

We present results from deep X-ray stacking of >4000 high redshift galaxies from z~1 to 8 using the 4 Ms Chandra Deep Field South (CDF-S) data, the deepest X-ray survey of the extragalactic sky to date. The galaxy samples were selected using the Lyma n break technique based primarily on recent HST ACS and WFC3 observations. Based on such high specific star formation rates (sSFRs): log SFR/M* > -8.7, we expect that the observed properties of these LBGs are dominated by young stellar populations. The X-ray emission in LBGs, eliminating individually detected X-ray sources (potential AGN), is expected to be powered by X-ray binaries and hot gas. We find, for the first time, evidence of evolution in the X-ray/SFR relation. Based on X-ray stacking analyses for z<4 LBGs (covering ~90% of the Universes history), we find that the 2-10 keV X-ray luminosity evolves weakly with redshift (z) and SFR as log LX = 0.93 log (1+z) + 0.65 log SFR + 39.80. By comparing our observations with sophisticated X-ray binary population synthesis models, we interpret that the redshift evolution of LX/SFR is driven by metallicity evolution in HMXBs, likely the dominant population in these high sSFR galaxies. We also compare these models with our observations of X-ray luminosity density (total 2-10 keV luminosity per Mpc^3) and find excellent agreement. While there are no significant stacked detections at z>5, we use our upper limits from 5<z<8 LBGs to constrain the SMBH accretion history of the Universe around the epoch of reionization.
137 - C.G. Lacey 2010
We make a detailed investigation of the properties of Lyman-break galaxies (LBGs) in the LambdaCDM model. We present predictions for two published variants of the GALFORM semi-analytical model: the Baugh et al. (2005) model, which has star formation at high redshifts dominated by merger-driven starbursts with a top-heavy IMF, and the Bower et al. (2006) model, which has AGN feedback and a standard Solar neighbourhood IMF throughout. We show predictions for the evolution of the rest-frame far-UV luminosity function in the redshift range z=3-20, and compare with the observed luminosity functions of LBGs at z=3-10. We find that the Baugh et al. model is in excellent agreement with these observations, while the Bower et al. model predicts too many high-luminosity LBGs. Dust extinction, which is predicted self-consistently based on galaxy gas contents, metallicities and sizes, is found to have a large effect on LBG luminosities. We compare predictions for the size evolution of LBGs at different luminosities with observational data for 2<z<7, and find the Baugh et al. model to be in good agreement. We present predictions for stellar, halo and gas masses, star formation rates, circular velocities, bulge-to-disk ratios, gas and stellar metallicities and clustering bias, as functions of far-UV luminosity and redshift. We find broad consistency with current observational constraints. We then present predictions for the abundance and angular sizes of LBGs out to very high redshift (z<20), finding that planned deep surveys with JWST should detect objects out to z<15. The typical UV luminosities of galaxies are predicted to be very low at high redshifts, which has implications for detecting the galaxies responsible for reionizing the IGM; for example, at z=10, 50% of the ionizing photons are expected to be produced by galaxies fainter than M_AB(1500A)-5logh ~ -15.
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ~ 3 to investigate systematically the relationship between Lya emission and stellar populations. Lya equivalent widths (EW) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lya emission, where we designate the former group (EW > 20 AA) as Lya emitters (LAEs) and the latter group (EW < 20 AA) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lya equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lya emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lya emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lya emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lya photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.
It has recently been shown that galaxy formation models within the LambdaCDM cosmology predict that, compared to the observed population, small galaxies (with stellar masses < 10^{11} M_sun) form too early, are too passive since z ~ 3 and host too ol d stellar populations at z=0. We then expect an overproduction of small galaxies at z > 4 that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the MORGANA galaxy formation model and GRASIL spectro-photometric + radiative transfer code to generate mock catalogues of deep fields observed with HST-ACS. We add observational noise and the effect of Lyman-alpha emission, and perform color-color selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i-dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of z_{850} ~ 27 V-dropouts at z ~ 5. We quantify the properties of these excess galaxies and discuss the implications: these galaxies are hosted in dark matter halos with circular velocities in excess of 100 km s^{-1}, and their suppression may require a deep re-thinking of stellar feedback processes taking place in galaxy formation.
We present first results of a study of the submillimetre (rest frame far-infrared) properties of z~3 Lyman Break Galaxies (LBGs) and their lower-redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the G reat Observatories Origins Deep Survey (GOODS-N). We use stacking analysis to determine the properties of LBGs well below the current limit of the survey. Although LBGs are not detected individually, stacking the infrared luminous LBGs (those detected with Spitzer at 24 microns yields a statistically significant submm detection with mean flux <S_{250}>= 5.9+/-1.4 mJy confirming the power of SPIRE in detecting UV-selected high-redshift galaxies at submillimetre wavelengths. In comparison, the Spitzer 24 microns detected BX/BM galaxies appear fainter with a stacked value of <S_{250}> = 2.7 +/-0.8 mJy. By fitting the Spectral Energy Distributions (SEDs) we derive median infrared luminosities, L_{IR}, of 2.8x10^{12} Lsun and 1.5x10^{11} Lsun for z~3 LBGs and BX/BMs, respectively. We find that $L_{IR} estimates derived from present measurements are in good agreement with those based on UV data for z~2 BX/BM galaxies, unlike the case for z~3 infrared luminous LBGs where the UV underestimates the true $L_{IR}. Although sample selection effects may influence this result we suggest that differences in physical properties (such as morphologies, dust distribution and extent of star-forming regions) between z ~3 LBGs and z~2 BX/BMs may also play a significant role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا