ترغب بنشر مسار تعليمي؟ اضغط هنا

Granular packings of cohesive elongated particles

177   0   0.0 ( 0 )
 نشر من قبل Dirk Kadau
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report numerical results of effective attractive forces on the packing properties of two-dimensional elongated grains. In deposits of non-cohesive rods in 2D, the topology of the packing is mainly dominated by the formation of ordered structures of aligned rods. Elongated particles tend to align horizontally and the stress is mainly transmitted from top to bottom, revealing an asymmetric distribution of local stress. However, for deposits of cohesive particles, the preferred horizontal orientation disappears. Very elongated particles with strong attractive forces form extremely loose structures, characterized by an orientation distribution, which tends to a uniform behavior when increasing the Bond number. As a result of these changes, the pressure distribution in the deposits changes qualitatively. The isotropic part of the local stress is notably enhanced with respect to the deviatoric part, which is related to the gravity direction. Consequently, the lateral stress transmission is dominated by the enhanced disorder and leads to a faster pressure saturation with depth.



قيم البحث

اقرأ أيضاً

The rheology of cohesive granular materials, under a constant pressure condition, is studied using molecular dynamics simulations. Depending on the shear rate, pressure, and interparticle cohesiveness, the system exhibits four distinctive phases: uni form shear, oscillation, shear-banding, and clustering. The friction coefficient is found to increase with the inertial number, irrespective of the cohesiveness. The friction coefficient becomes larger for strong cohesion. This trend is explained by the anisotropies of the coordination number and angular distribution of the interparticle forces. In particular, we demonstrate that the second-nearest neighbors play a role in the rheology of cohesive systems.
Loose granular structures stabilized against gravity by an effective cohesive force are investigated on a microscopic basis using contact dynamics. We study the influence of the granular Bond number on the density profiles and the generation process of packings, generated by ballistic deposition under gravity. The internal compaction occurs discontinuously in small avalanches and we study their size distribution. We also develop a model explaining the final density profiles based on insight about the collapse of a packing under changes of the Bond number.
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the po lymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
For packings of hard but not perfectly rigid particles, the length scales that govern the packing geometry and the contact forces are well separated. This separation of length scales is explored in the force network ensemble, where one studies the sp ace of allowed force configurations for a given, frozen contact geometry. Here we review results of this approach, which yields nontrivial predictions for the effect of packing dimension and anisotropy on the contact force distribution $P(f)$, the response to overall shear and point forcing, all of which can be studied in great numerical detail. Moreover, there are emerging analytical approaches that very effectively capture, for example, the form of force distributions.
We present a multiscale simulation algorithm for amorphous materials, which we illustrate and validate in a canonical case of dense granular flow. Our algorithm is based on the recently proposed Spot Model, where particles in a dense random packing u ndergo chain-like collective displacements in response to diffusing spots of influence, carrying a slight excess of interstitial free volume. We reconstruct the microscopic dynamics of particles from the coarse grained dynamics of spots by introducing a localized particle relaxation step after each spot-induced block displacement, simply to enforce packing constraints with a (fairly arbitrary) soft-core repulsion. To test the model, we study to what extent it can describe the dynamics of up to 135,000 frictional, viscoelastic spheres in granular drainage simulated by the discrete-element method (DEM). With only five fitting parameters (the radius, volume, diffusivity, drift velocity, and injection rate of spots), we find that the spot simulations are able to largely reproduce not only the mean flow and diffusion, but also some subtle statistics of the flowing packings, such as spatial velocity correlations and many-body structural correlations. The spot simulations run over 100 times faster than DEM and demonstrate the possibility of multiscale modeling for amorphous materials, whenever a suitable model can be devised for the coarse-grained spot dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا