ﻻ يوجد ملخص باللغة العربية
Helicity and alpha effect driven by the nonaxisymmetric Tayler instability of toroidal magnetic fields in stellar radiation zones are computed. In the linear approximation a purely toroidal field always excites pairs of modes with identical growth rates but with opposite helicity so that the net helicity vanishes. If the magnetic background field has a helical structure by an extra (weak) poloidal component then one of the modes dominates producing a net kinetic helicity anticorrelated to the current helicity of the background field. The mean electromotive force is computed with the result that the alpha effect by the most rapidly growing mode has the same sign as the current helicity of the background field. The alpha effect is found as too small to drive an alpha^{2} dynamo but the excitation conditions for an alphaOmega dynamo can be fulfilled for weak poloidal fields. Moreover, if the dynamo produces its own alpha effect by the magnetic instability then problems with its sign do not arise. For all cases, however, the alpha effect shows an extremely strong concentration to the poles so that a possible alphaOmega dynamo might only work at the polar regions. Hence, the results of our linear theory lead to a new topological problem for the existence of large-scale dynamos in stellar radiation zones on the basis of the current-driven instability of toroidal fields.
We examine the MHD instabilities arising in the radiation zone of a differentially rotating star, in which a poloidal field of fossil origin is sheared into a toroidal field. We focus on the non-axisymmetric instability that affects the toroidal magn
Young solar-type stars rotate rapidly and are very magnetically active. The magnetic fields at their surfaces likely originate in their convective envelopes where convection and rotation can drive strong dynamo action. Here we explore simulations of
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has
Though usually treated in isolation, the magnetorotational and gravitational instabilities (MRI and GI) may coincide at certain radii and evolutionary stages of protoplanetary discs and active galactic nuclei. Their mutual interactions could profound
We investigate to what extent the current helicity distribution observed in solar active regions is compatible with solar dynamo models. We use an advanced 2D mean-field dynamo model with dynamo action largely concentrated near the bottom of the conv