ﻻ يوجد ملخص باللغة العربية
We investigate sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of systems and an adiabatic ramping of the laser parameters allows to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25(3)microK and 47(5)microK in high-density samples of the two isotopes 39K and 41K, respectively. Our findings will find application to other atomic systems.
Gray molasses is a powerful tool for sub-Doppler laser cooling of atoms to low temperatures. For alkaline atoms, this technique is commonly implemented with cooling lasers which are blue-detuned from either the D1 or D2 line. Here we show that effici
We demonstrate a compact laser source suitable for the trapping and cooling of potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows to generate the two
We propose a sub-Doppler laser cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the phenomenon of electromagnetically induced transparency (EIT). EIT is a destructive quantum interference phen
We investigate cooling mechanisms in magneto-optically and magnetically trapped erbium. We find efficient sub-Doppler cooling in our trap, which can persist even in large magnetic fields due to the near degeneracy of two Lande g factors. Furthermore,
We report laser cooling of fermionic K-40 atoms, with temperatures down to (15 +/- 5) microK, for an enriched sample trapped in a MOT and additionaly cooled in optical molasses. This temperature is a factor of 10 below the Doppler-cooling limit and c