ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Doppler laser cooling of potassium atoms

87   0   0.0 ( 0 )
 نشر من قبل Manuele Landini
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of systems and an adiabatic ramping of the laser parameters allows to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25(3)microK and 47(5)microK in high-density samples of the two isotopes 39K and 41K, respectively. Our findings will find application to other atomic systems.

قيم البحث

اقرأ أيضاً

Gray molasses is a powerful tool for sub-Doppler laser cooling of atoms to low temperatures. For alkaline atoms, this technique is commonly implemented with cooling lasers which are blue-detuned from either the D1 or D2 line. Here we show that effici ent gray molasses can be implemented on the D2 line of 40K with red-detuned lasers. We obtained temperatures of 48(2) microKelvin, which enables direct loading of 9.2(3)*10^6 atoms from a magneto-optical trap into an optical dipole trap. We support our findings by a one-dimensional model and three-dimensional numerical simulations of the optical Bloch equations which qualitatively reproduce the experimentally observed cooling effects.
87 - Guillaume Stern 2010
We demonstrate a compact laser source suitable for the trapping and cooling of potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows to generate the two required frequencies for cooling in a simple and robust apparatus. We successfully used this laser source to trap ^39 K.
We propose a sub-Doppler laser cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the phenomenon of electromagnetically induced transparency (EIT). EIT is a destructive quantum interference phen omenon experienced by atoms with multiple internal quantum states when illuminated by laser fields with appropriate frequencies. By detuning the lasers slightly from the dark resonance, we observe that, within the transparency window, atoms can be subject to a strong viscous force, while being only slightly heated by the diffusion caused by spontaneous photon scattering. In contrast to other laser cooling schemes, such as polarization gradient cooling or EIT-sideband cooling, no external magnetic field or strong external confining potential is required. Using a semiclassical approximation, we derive analytically quantitative expressions for the steady-state temperature, which is confirmed by full quantum mechanical numerical simulations. We find that the lowest achievable temperatures approach the single-photon recoil energy. In addition to dissipative forces, the atoms are subject to a stationary conservative potential, leading to the possibility of spatial confinement. We find that under typical experimental parameters this effect is weak and stable trapping is not possible.
We investigate cooling mechanisms in magneto-optically and magnetically trapped erbium. We find efficient sub-Doppler cooling in our trap, which can persist even in large magnetic fields due to the near degeneracy of two Lande g factors. Furthermore, a continuously loaded magnetic trap is demonstrated where we observe temperatures below 25 microkelvin. These favorable cooling and trapping properties suggest a number of scientific possibilities for rare-earth atomic physics, including narrow linewidth laser cooling and spectroscopy, unique collision studies, and degenerate bosonic and fermionic gases with long-range magnetic dipole coupling.
We report laser cooling of fermionic K-40 atoms, with temperatures down to (15 +/- 5) microK, for an enriched sample trapped in a MOT and additionaly cooled in optical molasses. This temperature is a factor of 10 below the Doppler-cooling limit and c orresponds to an rms velocity within a factor of two of the lowest realizable rms velocity (~3.5v rec) in 3D optical molasses. Realization of such low atom temperatures, up to now only accessible with evaporative cooling techniques, is an important precursor to producing a degenerate Fermi gas of K-40 atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا