ﻻ يوجد ملخص باللغة العربية
A CP-semigroup is aligned if its set of trivially maximal subordinates is totally ordered by subordination. We prove that aligned spatial E_0-semigroups are prime: they have no non-trivial tensor product decompositions up to cocycle conjugacy. As a consequence, we establish the existence of uncountably many non-cocycle conjugate E_0-semigroups of type II_0 which are prime.
An E_0-semigroup is called q-pure if it is a CP-flow and its set of flow subordinates is totally ordered by subordination. The range rank of a positive boundary weight map is the dimension of the range of its dual map. Let K be a separable Hilbert sp
We consider families of E_0-semigroups continuously parametrized by a compact Hausdorff space, which are cocycle-equivalent to a given E_0-semigroup beta. When the gauge group of $beta$ is a Lie group, we establish a correspondence between such famil
This paper concerns the structure of the group of local unitary cocycles, also called the gauge group, of an E_0-semigroup. The gauge group of a spatial E_0-semigroup has a natural action on the set of units by operator multiplication. Arveson has ch
We show that the quantum family of all maps from a finite space to a finite dimensional compact quantum semigroup has a canonical quantum semigroup structure.
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t