ترغب بنشر مسار تعليمي؟ اضغط هنا

Method to characterize spinons as emergent elementary particles

79   0   0.0 ( 0 )
 نشر من قبل Ying Tang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a technique to directly study spinons (emergent spin S = 1/2 particles) in quantum spin models in any number of dimensions. The size of a spinon wave packet and of a bound pair (a triplon) are defined in terms of wave-function overlaps that can be evaluated by quantum Monte Carlo simulations. We show that the same information is contained in the spin-spin correlation function as well. We illustrate the method in one dimension. We confirm that spinons are well defined particles (have exponentially localized wave packet) in a valence-bond-solid state, are marginally defined (with power-law shaped wave packet) in the standard Heisenberg critical state, and are not well defined in an ordered Neel state (achieved in one dimension using long-range interactions).

قيم البحث

اقرأ أيضاً

We report on spectroscopy study of elementary magnetic excitations in an Ising-like antiferromagnetic chain compound SrCo$_2$V$_2$O$_8$ as a function of temperature and applied transverse magnetic field up to 25 T. An optical as well as an acoustic b ranch of confined spinons, the elementary excitations at zero field, are identified in the antiferromagnetic phase below the N{e}el temperature of 5 K and described by a one-dimensional Schr{o}dinger equation. The confinement can be suppressed by an applied transverse field and a quantum disordered phase is induced at 7 T. In this disordered paramagnetic phase, we observe three emergent fermionic excitations with different transverse-field dependencies. The nature of these modes is clarified by studying spin dynamic structure factor of a 1D transverse-field Heisenberg-Ising (XXZ) model using the method of infinite time evolving block decimation. Our work reveals emergent quantum phenomena and provides a concrete system for testifying theoretical predications of one-dimension quantum spin models.
64 - T. Asano , H. Nojiri , Y. Inagaki 2002
Considering experimental results obtained on three prototype compounds, TMMC, CsCoCl3 (or CsCoBr3) and Cu Benzoate, we discuss the importance of non-linear excitations in the physics of quantum (and classical) antiferromagnetic spin chains.
We develop variational matrix product state (MPS) methods with symmetries to determine dispersion relations of one dimensional quantum lattices as a function of momentum and preset quantum number. We test our methods on the XXZ spin chain, the Hubbar d model and a non-integrable extended Hubbard model, and determine the excitation spectra with a precision similar to the one of the ground state. The formulation in terms of quantum numbers makes the topological nature of spinons and holons very explicit. In addition, the method also enables an easy and efficient direct calculation of the necessary magnetic field or chemical potential required for a certain ground state magnetization or particle density.
We use the variational matrix-product ansatz to study elementary excitations in the S=1/2 ladder with additional diagonal coupling, equivalent to a single S=1/2 chain with alternating exchange and next-nearest neighbor interaction. In absence of alte rnation the elementary excitation consists of two free S=1/2 particles (spinons) which are solitons in the dimer order. When the nearest-neighbor exchange alternates, the spinons are confined into one S=1 excitation being a soliton in the generalized string order. Variational results are found to be in a qualitative agreement with the exact diagonalization data for 24 spins. We argue that such an approach gives a reasonably good description in a wide range of the model parameters.
We use the first Betti number of a complex to characterize the morphological structure of granular samples in mechanical equilibrium. We analyze two-dimensional granular packings after a tapping process by means of both simulations and experiments. S tates with equal packing fraction obtained with different tapping intensities are distinguished after the introduction of a filtration parameter which determines the particles (nodes in the network) that are joined by an edge. We first use numerical simulations to characterize the effect of the precision in the particles localization by artificially adding different levels of noise in this magnitude. The outcomes obtained for the simulations are then compared with the experimental results allowing a clear distinction of experimental packings that have the same density. This is accomplished by just using the position of the particles and no other information about the possible contacts, or magnitude of forces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا