ﻻ يوجد ملخص باللغة العربية
The sparsity constrained rank-one matrix approximation problem is a difficult mathematical optimization problem which arises in a wide array of useful applications in engineering, machine learning and statistics, and the design of algorithms for this problem has attracted intensive research activities. We introduce an algorithmic framework, called ConGradU, that unifies a variety of seemingly different algorithms that have been derived from disparate approaches, and allows for deriving new schemes. Building on the old and well-known conditional gradient algorithm, ConGradU is a simplified version with unit step size and yields a generic algorithm which either is given by an analytic formula or requires a very low computational complexity. Mathematical properties are systematically developed and numerical experiments are given.
This article derives lower bounds on the convergence rate of continuous-time gradient-based optimization algorithms. The algorithms are subjected to a time-normalization constraint that avoids a reparametrization of time in order to make the discussi
Low rank matrix recovery problems, including matrix completion and matrix sensing, appear in a broad range of applications. In this work we present GNMR -- an extremely simple iterative algorithm for low rank matrix recovery, based on a Gauss-Newton
We study the asymmetric low-rank factorization problem: [min_{mathbf{U} in mathbb{R}^{m times d}, mathbf{V} in mathbb{R}^{n times d}} frac{1}{2}|mathbf{U}mathbf{V}^top -mathbf{Sigma}|_F^2] where $mathbf{Sigma}$ is a given matrix of size $m times n$ a
The conditional gradient method (CGM) is widely used in large-scale sparse convex optimization, having a low per iteration computational cost for structured sparse regularizers and a greedy approach to collecting nonzeros. We explore the sparsity acq
The low-rank matrix completion problem can be solved by Riemannian optimization on a fixed-rank manifold. However, a drawback of the known approaches is that the rank parameter has to be fixed a priori. In this paper, we consider the optimization pro