ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular dynamics simulation of the recrystallization of amorphous Si layers: Comprehensive study of the dependence of the recrystallization velocity on the interatomic potential

142   0   0.0 ( 0 )
 نشر من قبل Christophe Krzeminski
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The molecular dynamics method is applied to simulate the recrystallization of an amorphous/crystalline silicon interface. The atomic structure of the amorphous material is constructed with the method of Wooten, Winer, and Weaire. The amorphous on crystalline stack is annealed afterward on a wide range of temperature and time using five different interatomic potentials: Stillinger-Weber, Tersoff, EDIP, SW115, and Lenosky. The simulations are exploited to systematically extract the recrystallization velocity. A strong dependency of the results on the interatomic potential is evidenced and explained by the capability of some potentials (Tersoff and SW115) to correctly handle the amorphous structure, while other potentials (Stillinger-Weber, EDIP, and Lenosky) lead to the melting of the amorphous. Consequently, the interatomic potentials are classified according to their ability to simulate the solid or the liquid phase epitaxy.

قيم البحث

اقرأ أيضاً

This work studies the effect of four different types of buffer layers on the structural and optical properties of InGaN layers grown on Si(111) substrates and their correlation with electrical characteristics. The vertical electrical conduction of n- InGaN/buffer-layer/p-Si heterostructures, with In composition near 46%, which theoretically produces an alignment of the bands, is analyzed. Droplet elimination by radical-beam irradiation was successfully applied to grow high quality InGaN films on Si substrates for the first time. Among several buffer choices, an AlN buffer layer with a thickness above 24 nm improves the structural and optical quality of the InGaN epilayer while keeping a top to bottom ohmic behavior. These results will allow fabricating double-junction InGaN/Si solar cells without the need of tunnel junctions between the two sub-cells, therefore simplifying the device design.
The modelling of interface migration and the associated diffusion mechanisms at the nanoscale level is a challenging issue. For many technological applications ranging from nanoelectronic devices to solar cells, more knowledge of the mechanisms gover ning the migration of the silicon amorphous/crystalline interface and dopant diffusion during solid phase epitaxy is needed. In this work, silicon recrystallisation in the framework of solid phase epitaxy and the influence on orientation effects have been investigated at the atomic level using empirical molecular dynamics simulations. The morphology and the migration process of the interface has been observed to be highly dependent on the original inter-facial atomic structure. The [100] interface migration is a quasi-planar ideal process whereas the cases [110] and [111] are much more complex with a more diffuse interface. For [110], the interface migration corresponds to the formation and dissolution of nanofacets whereas for [111] a defective based bilayer reordering is the dominant re-growth process. The study of the interface velocity migration in the ideal case of defect free re-growth reveals no difference between [100] and [110] and a decrease by a mean factor of 1.43 for the case [111]. Finally, the influence of boron atoms in the amorphous part on the interface migration velocity is also investigated in the case of [100] orientation.
79 - Ji Xu , Ying Ren , Wei Ge 2010
Molecular dynamics (MD) simulation is a powerful computational tool to study the behavior of macromolecular systems. But many simulations of this field are limited in spatial or temporal scale by the available computational resource. In recent years, graphics processing unit (GPU) provides unprecedented computational power for scientific applications. Many MD algorithms suit with the multithread nature of GPU. In this paper, MD algorithms for macromolecular systems that run entirely on GPU are presented. Compared to the MD simulation with free software GROMACS on a single CPU core, our codes achieve about 10 times speed-up on a single GPU. For validation, we have performed MD simulations of polymer crystallization on GPU, and the results observed perfectly agree with computations on CPU. Therefore, our single GPU codes have already provided an inexpensive alternative for macromolecular simulations on traditional CPU clusters and they can also be used as a basis to develop parallel GPU programs to further speedup the computations.
128 - Juergen Horbach 2008
The structural and dynamic properties of silica melts under high pressure are studied using molecular dynamics (MD) computer simulation. The interactions between the ions are modeled by a pairwise-additive potential, the so-called CHIK potential, tha t has been recently proposed by Carre et al. The experimental equation of state is well-reproduced by the CHIK model. With increasing pressure (density), the structure changes from a tetrahedral network to a network containing a high number of five- and six-fold Si-O coordination. In the partial static structure factors, this change of the structure with increasing density is reflected by a shift of the first sharp diffraction peak towards higher wavenumbers q, eventually merging with the main peak at densities around 4.2 g/cm^3. The self-diffusion constants as a function of pressure show the experimentally-known maximum, occurring around a pressure of about 20 GPa.
Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more propert ies. We present EZFF, a lightweight Python library for parameterization of several types of interatomic forcefields implemented in several molecular dynamics engines against multiple objectives using genetic-algorithm-based global optimization methods. The EZFF scheme provides unique functionality such as the parameterization of hybrid forcefields composed of multiple forcefield interactions as well as built-in quantification of uncertainty in forcefield parameters and can be easily extended to other forcefield functional forms as well as MD engines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا