ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for filamentary superconductivity nucleated at antiphase domain walls in antiferromagnetic CaFe$_2$As$_2$

200   0   0.0 ( 0 )
 نشر من قبل Hong Xiao
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resistivity, magnetization and microscopic $^{75}$As nuclear magnetic resonance (NMR) measurements in the antiferromagnetically ordered state of the iron-based superconductor parent material CaFe$_2$As$_2$ exhibit anomalous features that are consistent with the collective freezing of domain walls. Below $T^*approx 10$ K, the resistivity exhibits a peak and downturn, the bulk magnetization exhibits a sharp increase, and $^{75}$As NMR measurements reveal the presence of slow fluctuations of the hyperfine field. These features in both the charge and spin response are strongly field dependent, are fully suppressed by $H^*approx 15$ T, and suggest the presence of filamentary superconductivity nucleated at the antiphase domain walls in this material.



قيم البحث

اقرأ أيضاً

The antiferromagnet CaFe$_2$As$_2$ does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibilit y under quasi-hydrostatic pressure, however, we find that a substantial volume fraction of the sample is superconducting in a narrow pressure range where collapsed tetragonal and orthorhombic structures coexist. At higher pressures, the collapsed tetragonal structure is stabilized, with the boundary between this structure and the phase of coexisting structures strongly dependent on pressure history. Fluctuations in magnetic degrees of freedom in the phase of coexisting structures appear to be important for superconductivity.
We revisit the electronic structure of BaFe$_2$As$_2$, the archetypal parent compound of the Fe-based superconductors, using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples detwinned by the application o f a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low temperature magnetic phase. By comparison of the observed dispersions with ab-initio calculations, we argue that overall it is magnetism, rather than orbital ordering, which is the dominant effect, reconstructing the electronic structure across the Fe 3d bandwidth. Finally, we measure band dispersions directly from within one domain without applying strain to the sample, by using the sub-micron focused beam spot of a nano-ARPES instrument.
Ternary iron arsenide EuFe$_2$As$_2$ with ThCr$_2$Si$_2$-type structure has been studied by magnetic susceptibility, resistivity, thermopower, Hall and specific heat measurements. The compound undergoes two magnetic phase transitions at about 200 K a nd 20 K, respectively. The former was found to be accompanied with a slight drop in magnetic susceptibility (after subtracting the Curie-Weiss paramagnetic contribution), a rapid decrease in resistivity, a large jump in thermopower and a sharp peak in specific heat with decreasing temperature, all of which point to a spin-density-wave-like antiferromagnetic transition. The latter was proposed to be associated with an A-type antiferromagnetic ordering of Eu$^{2+}$ moments. Comparing with the physical properties of the iso-structural compounds BaFe$_2$As$_2$ and SrFe$_2$As$_2$, we expect that superconductivity could be induced in EuFe$_2$As$_2$ through appropriate doping.
We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31. 007(1) {AA}, and $Z$ = 2), which contains double Fe$_2$As$_2$ conducting layers separated by insulating Ca$_2$F$_2$ layers. Our measurements of electrical resistivity, dc magnetic susceptibility and heat capacity demonstrate bulk superconductivity at 33 K in KCa$_2$Fe$_4$As$_4$F$_2$.
184 - L. J. Li , Q. B. Wang , Y. K. Luo 2008
A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature $T_c^{on}$ reaches a maximum of 20.5 K at $x$ = 0.096, and it drops to below 4 K as $x$ $geq$ 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا