ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction

240   0   0.0 ( 0 )
 نشر من قبل Antonio Bianconi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advanced synchrotron radiation focusing down to a size of 300 nm has been used to visualize nanoscale phase separation in the K0.8Fe1.6Se2 superconducting system using scanning nanofocus single-crystal X-ray diffraction. The results show an intrinsic phase separation in K0.8Fe1.6Se2 single crystals at T< 520 K, revealing coexistence of i) a magnetic phase characterized by an expanded lattice with superstructures due to Fe vacancy ordering and ii) a non-magnetic phase with an in-plane compressed lattice. The spatial distribution of the two phases at 300 K shows a frustrated or arrested nature of the phase separation. The space-resolved imaging of the phase separation permitted us to provide a direct evidence of nanophase domains smaller than 300 nm and different micrometer-sized regions with percolating magnetic or nonmagnetic domains forming a multiscale complex network of the two phases.



قيم البحث

اقرأ أيضاً

We report Raman light scattering in the phase separated superconducting single crystal Rb0.77Fe1.61Se2 with Tc = 32 K. The spectra have been measured in a wide temperature range 3K -500K. The observed phonon lines from the majority vacancy ordered Rb 2Fe4Se5 (245) antiferromagnetic phase with TN= 525 K demonstrate modest anomalies in frequency, intensity and halfwidth at the superconductive phase transition. We identify phonon lines from the minority compressed Rb{delta}Fe2Se2 (122) conductive phase. The superconducting gap with dx2-y2 symmetry is also detected in our spectra. In the range 0-600 cm-1 we observed the low intensive but highly polarized B1g-type background which becomes well structured under cooling. The possible magnetic or multiorbital origin of this background has been discussed. We argue that phase separation in M0.8+xFe1.6+ySe2 has pure magnetic origin. It occurs below Neel temperature when iron magnetic moment achieves some critical magnitude. We state that there is a spacer between the majority 245 and minority 122 phases. Using ab-initio spin polarized band structure calculations we demonstrate that compressed vacancy ordered Rb2Fe4Se5 phase can be conductive and therefore may serve as a protective interface spacer between the pure metallic Rb{delta}Fe2Se2 phase and the insulating Rb2Fe4Se5 phase providing the percolative Josephson-junction like superconductivity in the whole sample of Rb0.8+xFe1.6+ySe2 Our lattice dynamics calculations show significant difference in the phonon spectra of the conductive and insulating Rb2Fe4.Se5 phases.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate sta tic magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
76 - A. Ricci , G. Campi , B. Joseph 2020
Coexistence of phases, characterized by different electronic degrees of freedom, commonly occurs in layered superconductors. Among them, alkaline intercalated chalcogenides are model systems showing microscale coexistence of paramagnetic (PAR) and an tiferromagnetic (AFM) phases, however, temporal behavior of different phases is still unknown. Here, we report the first visualization of the atomic motion in the granular phase of K$_{x}$Fe$_{2-y}$Se$_2$ using X-ray photon correlation spectroscopy. Unlike the PAR phase, the AFM texture reveals an intermittent dynamics with avalanches as in martensites. When cooled down across the superconducting transition temperature T$_c$, the AFM phase goes through an anomalous slowing behavior suggesting a direct relationship between the atomic motions in the AFM phase and the superconductivity. In addition of providing a compelling evidence of avalanche-like dynamics in a layered superconductor, the results provide a basis for new theoretical models to describe quantum states in inhomogeneous solids.
128 - A. Ricci , N. Poccia , B. Joseph 2015
We have used scanning micro x-ray diffraction to characterize different phases in superconducting K$_{x}$Fe$_{2-y}$Se$_2$ as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (T$_csim$32 K), phase separation temperature (T$_{ps}sim$520 K) and iron-vacancy order temperature (T$_{vo}sim$580 K). In addition to the iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic minority filamentary phase, we have found a clear evidence of the interface phase with tetragonal symmetry. The metallic phase is surrounded by this interface phase below $sim$300 K, and is embedded in the insulating texture. The spatial distribution of coexisting phases as a function of temperature provides a clear evidence of the formation of protected metallic percolative paths in the majority texture with large magnetic moment, required for the electronic coherence for the superconductivity. Furthermore, a clear reorganization of iron-vacancy order around the T$_{ps}$ and T$_c$ is found with the interface phase being mostly associated with a different iron-vacancy configuration, that may be important for protecting the percolative superconductivity in K$_{x}$Fe$_{2-y}$Se$_2$.
Temperature dependent single-crystal x-ray diffraction (XRD) in transmission mode probing the bulk of the newly discovered K0.8Fe1.6Se2 superconductor (Tc = 31.8 K) using synchrotron radiation is reported. A clear evidence of intrinsic phase separati on at 520 K between two competing phases, (i) a first majority magnetic phase with a ThCr2Si2-type tetragonal lattice modulated by the iron vacancy ordering and (ii) a minority non-magnetic phase having an in-plane compressed lattice volume and a weak superstructure, is reported. The XRD peaks due to the Fe vacancy ordering in the majority phase disappear by increasing the temperature at 580 K, well above phase separation temperature confirming the order-disorder phase transition. The intrinsic phase separation at 520K between a competing first magnetic phase and a second non-magnetic phase in the normal phase both having lattice superstructures (that imply different Fermi surface topology reconstruction and charge density) is assigned to a lattice-electronic instability of the K0.8Fe1.6Se2 system typical of a system tuned at a Lifshitz critical point of an electronic topological transition that gives a multi-gaps superconductor tuned a shape resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا