ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO

420   0   0.0 ( 0 )
 نشر من قبل Steven Johnson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the ultrafast dynamics of magnetic order in a single crystal of CuO at a temperature of 207 K in response to strong optical excitation using femtosecond resonant x-ray diffraction. In the experiment, a femtosecond laser pulse induces a sudden, nonequilibrium increase in magnetic disorder. After a short delay ranging from 400 fs to 2 ps, we observe changes in the relative intensity of the magnetic ordering diffraction peaks that indicate a shift from a collinear commensurate phase to a spiral incommensurate phase. These results indicate that the ultimate speed for this antiferromagnetic re-orientation transition in CuO is limited by the long-wavelength magnetic excitation connecting the two phases.



قيم البحث

اقرأ أيضاً

364 - Junjie Li , Kai Sun , Jun Li 2020
Disentangling the primary order parameter from secondary order parameters in phase transitions is critical to the interpretation of the transition mechanisms in strongly correlated systems and quantum materials. Here we present a study of structural phase transition pathways in superionic Cu2S nanocrystals that exhibit intriguing properties. Utilizing ultrafast electron diffraction techniques sensitive in both momentum-space and the time-domain, we distinguish the dynamics of crystal symmetry breaking and lattice expansion in this system. We are able to follow the transient states along the transition pathway and so observe the dynamics of both the primary and secondary order parameters. Based on these observations we argue that the mechanism of the structural phase transition in Cu2S is dominated by the electron-phonon coupling. This mechanism advances the understanding from previous results where the focus was solely on dynamic observations of the lattice expansion.
We compute the absorption spectrum for multimagnon excitations assisted by phonons in insulating layered cuprates using exact diagonalization in clusters of up to 32 sites. The resulting line shape is very sensitive to the underlying magnetic Hamilto nian describing the spin dynamics. For the usual Heisenberg description of undoped Cu-O planes we find, in accordance with experiment, a two-magnon peak followed by high energy side bands. However the relative weight of the side bands is too small to reproduce the experiment. An extended Heisenberg model including a sizable four-site cyclic exchange term is shown to be consistent with the experimental data.
We explore the coexistence region in the vicinity of the Mott critical end point employing a compressible cell spin-$1/2$ Ising-like model. We analyze the case for the spin-liquid candidate $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, where close to the Mot t critical end point metallic puddles coexist with an insulating ferroelectric phase. Our results are fourfold: $i$) a universal divergent-like behavior of the Gruneisen parameter upon crossing the first-order transition line; $ii$) based on scaling arguments, we show that within the coexistence region, for $any$ system close to the critical point, the relaxation time is entropy-dependent; $iii$) we propose the electric Gruneisen parameter $Gamma_E$, which quantifies the electrocaloric effect; $iv$) we identify the metallic/insulating coexistence region as an electronic Griffiths-like phase. Our findings suggest that $Gamma_E$ governs the dielectric response close to the critical point and that an electronic Griffiths-like phase emerges in the coexistence region.
103 - Alaska Subedi 2017
I study the structural and magnetic instabilities in LaNiO$_3$ using density functional theory calculations. From the non-spin-polarized structural relaxations, I find that several structures with different Glazer tilts lie close in energy. The $Pnma $ structure is marginally favored compared to the $Roverline{3}c$ structure in my calculations, suggesting the presence of finite-temperature structural fluctuations and a possible proximity to a structural quantum critical point. In the spin-polarized relaxations, both structures exhibit the $uparrow!!0!!downarrow!!0$ antiferromagnetic ordering with a rock-salt arrangement of the octahedral breathing distortions. The energy gain due to the breathing distortions is larger than that due to the antiferromagnetic ordering. These phases are semimetallic with small three-dimensional Fermi pockets, which is largely consistent with the recent observation of the coexistence of antiferromagnetism and metallicity in LaNiO$_3$ single crystals by Li textit{et al.} [arXiv:1705.02589].
By combining two independent approaches, inelastic neutron scattering measurements and density functional theory calculations, we study the spin-waves in the high-temperature collinear antiferromagnetic phase (AFM2) of Mn$_5$Si$_3$. We obtain its mag netic ground-state properties and electronic structure. This study allowed us to determine the dominant magnetic exchange interactions and magnetocrystalline anisotropy in the AFM2 phase of Mn$_5$Si$_3$. Moreover, the evolution of the spin excitation spectrum is investigated under the influence of an external magnetic field perpendicular to the anisotropy easy-axis. The low energy magnon modes show a different magnetic field dependence which is a direct consequence of their different precessional nature. Finally, possible effects related to the Dzyaloshinskii-Moriya interaction are also considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا