ترغب بنشر مسار تعليمي؟ اضغط هنا

Ejection of cool plasma into the hot corona

129   0   0.0 ( 0 )
 نشر من قبل Pia Zacharias
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the processes that lead to the formation, ejection and fall of a confined plasma ejection that was observed in a numerical experiment of the solar corona. By quantifying physical parameters such as mass, velocity, and orientation of the plasma ejection relative to the magnetic field, we provide a description of the nature of this particular phenomenon. The time-dependent three-dimensional magnetohydrodynamic (3D MHD) equations are solved in a box extending from the chromosphere to the lower corona. The plasma is heated by currents that are induced through field line braiding as a consequence of photospheric motions. Spectra of optically thin emission lines in the extreme ultraviolet range are synthesized, and magnetic field lines are traced over time. Following strong heating just above the chromosphere, the pressure rapidly increases, leading to a hydrodynamic explosion above the upper chromosphere in the low transition region. The explosion drives the plasma, which needs to follow the magnetic field lines. The ejection is then moving more or less ballistically along the loop-like field lines and eventually drops down onto the surface of the Sun. The speed of the ejection is in the range of the sound speed, well below the Alfven velocity. The plasma ejection is basically a hydrodynamic phenomenon, whereas the rise of the heating rate is of magnetic nature. The granular motions in the photosphere lead (by chance) to a strong braiding of the magnetic field lines at the location of the explosion that in turn is causing strong currents which are dissipated. Future studies need to determine if this process is a ubiquitous phenomenon on the Sun on small scales. Data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO) might provide the relevant information.



قيم البحث

اقرأ أيضاً

467 - H. Peter , H. Tian , W. Curdt 2014
The solar atmosphere was traditionally represented with a simple one-dimensional model. Over the past few decades, this paradigm shifted for the chromosphere and corona that constitute the outer atmosphere, which is now considered a dynamic structure d envelope. Recent observations by IRIS (Interface Region Imaging Spectrograph) reveal that it is difficult to determine what is up and down even in the cool 6000-K photosphere just above the solar surface: this region hosts pockets of hot plasma transiently heated to almost 100,000 K. The energy to heat and accelerate the plasma requires a considerable fraction of the energy from flares, the largest solar disruptions. These IRIS observations not only confirm that the photosphere is more complex than conventionally thought, but also provide insight into the energy conversion in the process of magnetic reconnection.
We present observations of the extended solar cycle activity in white-light coronagraphs, and compare them with the more familiar features seen in the Fe XIV green-line corona. We show that the coronal activity zones seen in the emission corona can b e tracked high into the corona. The peak latitude of the activity, which occurs near solar maximum, is found to be very similar at all heights. But we find that the equatorward drift of the activity zones is faster at greater heights, and that during the declining phase of the solar cycle, the lower branch of activity (that associated with the current cycle) disappears at about 3 Ro. This implies that that during the declining phase of the cycle, the solar wind detected near Earth is likely to be dominated by the next cycle. The so-called rush to the poles is also seen in the higher corona. In the higher corona it is found to start at a similar time but at lower latitudes than in the green-line corona. The structure is found to be similar to that of the equatorward drift.
128 - Eduard P. Kontar 2019
Dynamics of an spatially limited electron beam in the inhomogeneous solar corona plasma is considered in the framework of weak turbulence theory when the temperature of the beam significantly exceeds that of surrounding plasma. The numerical solution of kinetic equations manifests that generally the beam accompanied by Langmuir waves propagates as a beam-plasma structure with a decreasing velocity. Unlike the uniform plasma case the structure propagates with the energy losses in the form of Langmuir waves. The results obtained are compared with the results of observations of type III bursts. It is shown that the deceleration of type III sources can be explained by the corona inhomogeneity. The frequency drift rates of the type III sources are found in a good agreement with the numerical results of beam dynamics.
Eruptive activity in the solar corona can often lead to the propagation of shock waves. In the radio domain the primary signature of such shocks are type II radio bursts, observed in dynamic spectra as bands of emission slowly drifting towards lower frequencies over time. These radio bursts can sometimes have inhomogeneous and fragmented fine structure, but the cause of this fine structure is currently unclear. Here we observe a type II radio burst on 2019-March-20th using the New Extension in Nanc{c}ay Upgrading LOFAR (NenuFAR), a radio interferometer observing between 10-85 MHz. We show that the distribution of size-scales of density perturbations associated with the type II fine structure follows a power law with a spectral index in the range of $alpha=-1.7$ to -2.0, which closely matches the value of $-5/3$ expected of fully developed turbulence. We determine this turbulence to be upstream of the shock, in background coronal plasma at a heliocentric distance of $sim$2 R$_{odot}$. The observed inertial size-scales of the turbulent density inhomogeneities range from $sim$62 Mm to $sim$209 km. This shows that type II fine structure and fragmentation can be due to shock propagation through an inhomogeneous and turbulent coronal plasma, and we discuss the implications of this on electron acceleration in the coronal shock.
SDO/AIA images the full solar disk in several EUV bands that are each sensitive to coronal plasma emissions of one or more specific temperatures. We observe that when isolated active regions (ARs) are on the disk, full-disk images in some of the coro nal EUV channels show the outskirts of the AR as a dark moat surrounding the AR. Here we present seven specific examples, selected from time periods when there was only a single AR present on the disk. Visually, we observe the moat to be most prominent in the AIA 171 Angstrom band, which has the most sensitivity to emission from plasma at log10 T = 5.8. By examining the 1D line-of-sight emission measure temperature distribution found from six AIA EUV channels, we find the intensity of the moat to be most depressed over the temperature range log10 T ~ 5.7 - 6.2 for most of the cases. We argue that the dark moat exists because the pressure from the strong magnetic field that splays out from the AR presses down on underlying magnetic loops, flattening those loops -- along with the lowest of the ARs own loops over the moat -- to a low altitude. Those loops, which would normally emit the bulk of the 171 Angstrom emission, are restricted to heights above the surface that are too low to have 171 Angstrom-emitting plasmas sustained in them, according to Antiochos & Noci (1986), while hotter EUV-emitting plasmas are sustained in the overlying higher-altitude long AR-rooted coronal loops. This potentially explains the low-coronal-temperature dark moats surrounding the ARs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا