ترغب بنشر مسار تعليمي؟ اضغط هنا

The Extended Solar Cycle Tracked High into the Corona

337   0   0.0 ( 0 )
 نشر من قبل Richard Altrock
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of the extended solar cycle activity in white-light coronagraphs, and compare them with the more familiar features seen in the Fe XIV green-line corona. We show that the coronal activity zones seen in the emission corona can be tracked high into the corona. The peak latitude of the activity, which occurs near solar maximum, is found to be very similar at all heights. But we find that the equatorward drift of the activity zones is faster at greater heights, and that during the declining phase of the solar cycle, the lower branch of activity (that associated with the current cycle) disappears at about 3 Ro. This implies that that during the declining phase of the cycle, the solar wind detected near Earth is likely to be dominated by the next cycle. The so-called rush to the poles is also seen in the higher corona. In the higher corona it is found to start at a similar time but at lower latitudes than in the green-line corona. The structure is found to be similar to that of the equatorward drift.

قيم البحث

اقرأ أيضاً

The distribution of magnetic flux across the solar photosphere results in a complex web of coronal magnetic field structures. To understand this complexity, the magnetic skeleton of the coronal field can be calculated. The skeleton highlights the sep aratrix surfaces that divide the field into topologically distinct regions, allowing open-field regions on the solar surface to be located. Furthermore, separatrix surfaces and their intersections (separators) are important likely energy release sites. This paper investigates, throughout the solar cycle, the nature of coronal magnetic-field topologies that arise under the potential-field source-surface approximation. In particular, we characterise the typical global fields at solar maximum and minimum. Global magnetic fields are extrapolated from observed Kitt Peak and SOLIS synoptic magnetograms, from Carrington rotations 1645 to 2144, using the potential-field source-surface model. Hence, variations in the coronal skeleton are studied over three solar cycles. Key building blocks which make up magnetic fields are identified and classified according to the nature of their separatrix surfaces. The magnetic skeleton reveals that, at solar maximum, the global coronal field involves a multitude of topological structures at all latitudes. Many open-field regions exist originating anywhere on the photosphere. At solar minimum, the coronal topology is heavily influenced by the solar dipole. A strong dipole results in a simple large-scale structure involving just two large polar open-field regions, but, at short radial distances between plus or minus 60 deg latitude, the small-scale topology is complex. If the solar dipole if weak, as in the recent minimum, then the low-latitude quiet-sun magnetic fields may be globally significant enough to create many disconnected open-field regions at low latitudes, in addition to the two polar open-field regions.
The cyclic, enigmatic, and ubiquitous magnetism of the Sun provides the energy we need to survive and has the ability to destroy our technologically dependent civilization. Never before has understanding solar magnetism and forecasting its behavior b een so relevant. Indeed, on a broader canvas, understanding solar magnetism is a gateway to understanding the evolution and activity of other stars - the Sun is an astrophysical Rosetta Stone. Despite the centuries of observation, the past century of precise characterization, and significant advances in theoretical and numerical modeling over the past several decades, we have broken the cypher of the Suns global-scale magnetism. Using a host of observables spanning 140 years we will revisit an observational concept, the extended solar cycle, (ESC) that came to the fore in the mid-1980s but almost completely disappeared from the common consciousness of the global solar physics less than a sunspot cycle later - it is unclear why. Using a recently identified solar fiducial time, the end (or termination) of a solar cycle, we employ superposed epoch analysis to identify the ESC as a mapping of the Suns fundamental magnetic activity cycle and also as a recurring spatio-temporal unit of solar evolution. The ESC is a pattern from which the spatio-temporal pattern, and numerical modulation, of sunspots is produced. This effort illustrates that the ESC is the manifestation of the Suns Hale Cycle. We will close by pointing out areas of investigation indicated by the pattern of the Hale Cycle that may permit the conversion from observational correspondence to fundamental physical processes and a leap forward in understanding solar activity.
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Meas urements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no free parameters. Some new results regarding these models - including a quantitative prediction of the lower density and temperature at 1 AU seen during the present solar minimum in comparison to the prior minimum - are also shown.
We present a nonlinear mean-field model of the solar interior dynamics and dynamo, which reproduces the observed cyclic variations of the global magnetic field of the Sun, as well as the differential rotation and meridional circulation. Using this mo del, we explain, for the first time, the extended 22-year pattern of the solar torsional oscillations, observed as propagation of zonal variations of the angular velocity from high latitudes to the equator during the time equal to the full dynamo cycle. In the literature, this effect is usually attributed to the so-called extended solar cycle. In agreement with the commonly accepted idea our model shows that the torsional oscillations can be driven by a combinations of magnetic field effects acting on turbulent angular momentum transport, and the large-scale Lorentz force. We find that the 22-year pattern of the torsional oscillations can result from a combined effect of an overlap of subsequent magnetic cycles and magnetic quenching of the convective heat transport. The latter effect results in cyclic variations of the meridional circulation in the sunspot formation zone, in agreement with helioseismology results. The variations of the meridional circulation together with other drivers of the torsional oscillations maintain their migration to the equator during the 22-year magnetic cycle, resulting in the observed extended pattern of the torsional oscillations.
We present observations of a powerful solar eruption, accompanied by an X8.2 solar flare, from NOAA Active Region 12673 on 2017 September 10 by the Solar Ultraviolet Imager (SUVI) on the GOES-16 spacecraft. SUVI is noteworthy for its relatively large field of view, which allows it to image solar phenomena to heights approaching 2 solar radii. These observations include the detection of an apparent current sheet associated with magnetic reconnection in the wake of the eruption and evidence of an extreme-ultraviolet wave at some of the largest heights ever reported. We discuss the acceleration of the nascent coronal mass ejection to approximately 2000 km/s at about 1.5 solar radii. We compare these observations with models of eruptions and eruption-related phenomena. We also describe the SUVI data and discuss how the scientific community can access SUVI observations of the event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا