ﻻ يوجد ملخص باللغة العربية
Using the constrained superfields formalism to describe the interactions of a light goldstino to matter fields in supersymmetric models, we identify generalised, higher-order holomorphic superfield constraints that project out the superpartners and capture the non-universal couplings of the goldstino to matter fields. These arise from microscopic theories in which heavy superpartners masses are of the order of the supersymmetry breaking scale (sqrt f). In the decoupling limit of infinite superpartners masses, these constraints reduce to the familiar, lower-order universal constraints discussed recently, that describe the universal goldstino-matter fields couplings, suppressed by inverse powers of sqrt f. We initiate the study of the couplings of the Standard Model (SM) fields to goldstino in the constrained superfields formalism.
We compute Yukawa couplings in type IIa string theory compactified on a six-torus in the presence of intersecting D6-branes. The six-torus is generated by an SO(12) root lattice. Yukawa couplings are expressed as sums over worldsheet instantons. Our
We develop off-shell formulations for ${cal N}=1$ and ${cal N}=2$ anti-de Sitter supergravity theories in three spacetime dimensions that contain gauge two-forms in the auxiliary field sector. These formulations are shown to allow consistent coupling
For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino)
We give a direct microscopic derivation of the F-theory background that corresponds to four D7 branes of type I theory by taking into account the D-instanton contributions to the emission of the axio-dilaton field in the directions transverse to the
We present off-shell N=2 supergravity actions, which exhibit spontaneously broken local supersymmetry and allow for de Sitter vacua for certain values of the parameters. They are obtained by coupling the standard N=2 supergravity-matter systems to th