ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic non-perturbative corrections to gauge couplings

163   0   0.0 ( 0 )
 نشر من قبل Marco Billo'
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a direct microscopic derivation of the F-theory background that corresponds to four D7 branes of type I theory by taking into account the D-instanton contributions to the emission of the axio-dilaton field in the directions transverse to the D7s. The couplings of the axio-dilaton to the D-instanton moduli modify its classical source terms which are shown to be proportional to the elements of the D7 brane chiral ring. Solving the bulk field equations with the non-perturbatively corrected sources yields the full F-theory background. This solution represents the gravitational dual of the four-dimensional theory living on a probe D3 brane of type I, namely of the N=2, Sp(1) SYM theory with Nf=4. Our results provide an explicit microscopic derivation of the non-perturbative gravitational dual of this theory. They also explain the recent observation that the exact coupling for this theory can be entirely reconstructed from its perturbative part plus the knowledge of the chiral ring on the D7 branes supporting its flavor degrees of freedom.



قيم البحث

اقرأ أيضاً

We discuss a string model where a conformal four-dimensional N=2 gauge theory receives corrections to its gauge kinetic functions from stringy instantons. These contributions are explicitly evaluated by exploiting the localization properties of the i ntegral over the stringy instanton moduli space. The model we consider corresponds to a setup with D7/D3-branes in type I theory compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic dual. In the heteoric side the corrections to the quadratic gauge couplings are provided by a 1-loop threshold computation and, under the duality map, match precisely the first few stringy instanton effects in the type I setup. This agreement represents a very non-trivial test of our approach to the exotic instanton calculus.
193 - Michael Maziashvili 2008
Concerning the gravitational corrections to the running of gauge couplings two different results were reported. Some authors claim that gravitational correction at the one-loop level indicates an interesting effect of universal gravitational decreasi ng of gauge couplings, that is, gravitational correction works universally in the direction of asymptotic freedom no matter how the gauge coupling behaves without gravity, while others reject the presence of gravitational correction at the one-loop level at all. Being these calculations done in the framework of an effective field theory approach to general relativity, we wanted to draw attention to a recently discovered profound quantum-gravitational effect of space-time dimension running that inevitably affects the running of gauge couplings. The running of space-time dimension indicating gradual reduction of dimension as one gets into smaller scales acts on the coupling constants in the direction of asymptotic freedom and therefore in any case manifests the plausibility of this quantum-gravitational effect. Curiously enough, the results are also in perfect quantitative agreement with those of Robinson and Wilczek.
We comprehensively evaluate renormalized Higgs boson couplings at one-loop level in non-minimal Higgs models such as the Higgs Singlet Model (HSM) and the four types of Two Higgs Doublet Models (THDMs) with a softly-broken $Z_2$ symmetry. The renorma lization calculation is performed in the on-shell scheme improved by using the pinch technique to eliminate the gauge dependence in the renormalized couplings. We first review the pinch technique for scalar boson two-point functions in the Standard Model (SM), the HSM and the THDMs. We then discuss the difference in the results of the renormalized Higgs boson couplings between the improved on-shell scheme and the ordinal one with a gauge dependence appearing in mixing parameters of scalar bosons. Finally, we widely investigate how we can identify the HSM and the THDMs focusing on the pattern of deviations in the renormalized Higgs boson couplings from predictions in the SM.
Recently we provided a microscopic derivation of the exact supergravity profile for the twisted scalar field emitted by systems of fractional D3-branes at a Z2 orbifold singularity. In this contribution we focus on a set-up supporting an N = 2 SYM th eory with SU(2) gauge group and Nf=4. We take into account the tower of D-instanton corrections to the source terms for the twisted scalar and find that its profile can be expressed in terms of the chiral ring elements of the gauge theory. We show how the twisted scalar, which at the perturbative level represents the gravity counterpart of the gauge coupling, at the non-perturbative level is related to the effective gauge coupling in an interestingly modified way.
We discuss a non-perturbative lattice calculation of the ghost and gluon propagators in the pure Yang-Mills theory in Landau gauge. The ultraviolet behaviour is checked up to NNNLO yielding the value $Lambda^{n_f=0}_{ms}=269(5)^{+12}_{-9}text{MeV}$, and we show that lattice Green functions satisfy the complete Schwinger-Dyson equation for the ghost propagator for all considered momenta. The study of the above propagators at small momenta showed that the infrared divergence of the ghost propagator is enhanced, whereas the gluon propagator seem to remain finite and non-zero. The result for the ghost propagator is consistent with the analysis of the Slavnov-Taylor identity, whereas, according to this analysis, the gluon propagator should diverge in the infrared, a result at odds with other approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا