ﻻ يوجد ملخص باللغة العربية
Nansons and Baldwins voting rules select a winner by successively eliminating candidates with low Borda scores. We show that these rules have a number of desirable computational properties. In particular, with unweighted votes, it is NP-hard to manipulate either rule with one manipulator, whilst with weighted votes, it is NP-hard to manipulate either rule with a small number of candidates and a coalition of manipulators. As only a couple of other voting rules are known to be NP-hard to manipulate with a single manipulator, Nansons and Baldwins rules appear to be particularly resistant to manipulation from a theoretical perspective. We also propose a number of approximation methods for manipulating these two rules. Experiments demonstrate that both rules are often difficult to manipulate in practice. These results suggest that elimination style voting rules deserve further study.
We prove that it is NP-hard for a coalition of two manipulators to compute how to manipulate the Borda voting rule. This resolves one of the last open problems in the computational complexity of manipulating common voting rules. Because of this NP-ha
We consider existential rules (aka Datalog+) as a formalism for specifying ontologies. In recent years, many classes of existential rules have been exhibited for which conjunctive query (CQ) entailment is decidable. However, most of these classes can
We propose a simple method for combining together voting rules that performs a run-off between the different winners of each voting rule. We prove that this combinator has several good properties. For instance, even if just one of the base voting rul
Martin and Osswald cite{Martin07} have recently proposed many generalizations of combination rules on quantitative beliefs in order to manage the conflict and to consider the specificity of the responses of the experts. Since the experts express them
Schulzes rule is used in the elections of a large number of organizations including Wikimedia and Debian. Part of the reason for its popularity is the large number of axiomatic properties, like monotonicity and Condorcet consistency, which it satisfi