ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon anomaly in BaFe2As2

60   0   0.0 ( 0 )
 نشر من قبل Christopher Homes
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T_N = 138 K. A prominent in-plane infrared-active mode is observed at 253 cm^{-1} (31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at T_N; for T < T_N the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity. This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers.

قيم البحث

اقرأ أيضاً

86 - S. Gerber , K. W. Kim , Y. Zhang 2014
Ultrafast light pulses can modify the electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins, and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved x-ray scattering to measure the lattice dynamics of photo-excited BaFe2As2. Upon optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photo-induced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can generally be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands near the Fermi level.
Motivated by predictions of a substantial contribution of the buckling vibration of the CuO2 layers to d-wave superconductivity in the cuprates, we have performed an inelastic neutron scattering study of this phonon in an array of untwinned crystals of YBa2Cu3O7. The data reveal a pronounced softening of the phonon at the in-plane wave vector q = (0, 0.3) upon cooling below ~ 105 K, but no corresponding anomaly at q = (0.3, 0). Based on the observed in-plane anisotropy, we argue that the electron-phonon interaction responsible for this anomaly supports an electronic instability associated with a uniaxial charge-density modulation and does not mediate d-wave superconductivity.
472 - M. Nakajima , T. Liang , S. Ishida 2011
An ordered phase showing remarkable electronic anisotropy in proximity to the superconducting phase is now a hot issue in the field of high-transition-temperature superconductivity. As in the case of copper oxides, superconductivity in iron arsenides competes or coexists with such an ordered phase. Undoped and underdoped iron arsenides have a magnetostructural ordered phase exhibiting stripe-like antiferromagnetic spin order accompanied by an orthorhombic lattice distortion; both the spin order and lattice distortion break the tetragonal symmetry of crystals of these compounds. In this ordered state, anisotropy of in-plane electrical resistivity is anomalous and difficult to attribute simply to the spin order and/or the lattice distortion. Here, we present the anisotropic optical spectra measured on detwinned BaFe2As2 crystals with light polarization parallel to the Fe planes. Pronounced anisotropy is observed in the spectra, persisting up to an unexpectedly high photon energy of about 2 eV. Such anisotropy arises from an anisotropic energy gap opening below and slightly above the onset of the order. Detailed analysis of the optical spectra reveals an unprecedented electronic state in the ordered phase.
We report on an infrared study on the undoped compound BaFe2As2 as a function of both pressure (up to about 10 GPa) at three temperatures (300, 160, and 110 K). The evolution with pressure and temperature of the optical conductivity shows that, by in creasing pressure, the mid-infrared absorptions associated with magnetic order are lowered while the Drude term increases, indicating the evolution towards a conventional metallic state. We evaluate the spectral weight dependence on pressure comparing it to that previously found upon doping. The whole optical results indicate that lattice modifications can not be recognized as the only parameter determining the low-energy electrodynamics in these compounds.
89 - K. Matan , R. Morinaga , K. Iida 2009
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2, a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy of 9.8(4) meV. The in-plane spin-wave velocity v_ab and out-of-plane spin-wave velocity v_c measured at 12 meV are 280(150) and 57(7) meV A, respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At T_N=136(1) K, the gap closes, and quasi-elastic scattering is observed above T_N, indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes rodlike, characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا