ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct and Inverse Computation of Jacobi Matrices of Infinite Homogeneous Affine I.F.S

32   0   0.0 ( 0 )
 نشر من قبل Giorgio Mantica
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Giorgio Mantica




اسأل ChatGPT حول البحث

We introduce a new set of algorithms to compute Jacobi matrices associated with measures generated by infinite systems of iterated functions. We demonstrate their relevance in the study of theoretical problems, such as the continuity of these measures and the logarithmic capacity of their support. Since our approach is based on a reversible transformation between pairs of Jacobi matrices, we also discuss its application to an inverse / approximation problem. Numerical experiments show that the proposed algorithms are stable and can reliably compute Jacobi matrices of large order.

قيم البحث

اقرأ أيضاً

Bounds on the exponential decay of generalized eigenfunctions of bounded and unbounded selfadjoint Jacobi matrices are established. Two cases are considered separately: (i) the case in which the spectral parameter lies in a general gap of the spectru m of the Jacobi matrix and (ii) the case of a lower semi-bounded Jacobi matrix with values of the spectral parameter below the spectrum. It is demonstrated by examples that both results are sharp. We apply these results to obtain a many barriers-type criterion for the existence of square-summable generalized eigenfunctions of an unbounded Jacobi matrix at almost every value of the spectral parameter in suitable open sets. As an application, we provide examples of unbounded Jacobi matrices with a spectral mobility edge.
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jac obi matrices on certain rooted trees. We express their Greens functions and the matrix elements in terms of MOPs. This provides a generalization of the well-known connection between the theory of polynomials orthogonal on the real line and Jacobi matrices on $mathbb{Z}_+$ to higher dimension. We illustrate importance of this connection by proving ratio asymptotics for MOPs using methods of operator theory.
Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically-motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.
Products of $M$ i.i.d. non-Hermitian random matrices of size $N times N$ relate Gaussian fluctuation of Lyapunov and stability exponents in dynamical systems (finite $N$ and large $M$) to local eigenvalue universality in random matrix theory (finite $M$ and large $N$). The remaining task is to study local eigenvalue statistics as $M$ and $N$ tend to infinity simultaneously, which lies at the heart of understanding two kinds of universal patterns. For products of i.i.d. complex Ginibre matrices, truncated unitary matrices and spherical ensembles, as $M+Nto infty$ we prove that local statistics undergoes a transition when the relative ratio $M/N$ changes from $0$ to $infty$: Ginibre statistics when $M/N to 0$, normality when $M/Nto infty$, and new critical phenomena when $M/Nto gamma in (0, infty)$.
We consider a class of Jacobi matrices with unbounded entries in the so called critical (double root, Jordan box) case. We prove a formula for the spectral density of the matrix which relates its spectral density to the asymptotics of orthogonal polynomials associated with the matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا