ﻻ يوجد ملخص باللغة العربية
Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically-motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.
We consider the empirical eigenvalue distribution of an $mtimes m$ principal submatrix of an $ntimes n$ random unitary matrix distributed according to Haar measure. For $n$ and $m$ large with $frac{m}{n}=alpha$, the empirical spectral measure is well
We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transforma
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random
Let $U$ be a Haar distributed matrix in $mathbb U(n)$ or $mathbb O (n)$. In a previous paper, we proved that after centering, the two-parameter process [T^{(n)} (s,t) = sum_{i leq lfloor ns rfloor, j leq lfloor ntrfloor} |U_{ij}|^2] converges in dist
In this note, we show that the Lyapunov exponents of mixed products of random truncated Haar unitary and complex Ginibre matrices are asymptotically given by equally spaced `picket-fence statistics. We discuss how these statistics should originate fr