ترغب بنشر مسار تعليمي؟ اضغط هنا

First Passage Times and Breakthrough Curves Associated with Interfacial Phenomena

98   0   0.0 ( 0 )
 نشر من قبل Thilanka Arachchi Appuhamillage
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advection and dispersion in highly heterogeneous environments involving interfacial discontinuities in the corresponding drift and dispersion rates are described through disparate examples from the physical and biological sciences. A mathematical framework is formulated to address specific empirical phenomena involving first passage time and occupation time functionals observed in relation to the interfacial parameters.



قيم البحث

اقرأ أيضاً

281 - Sean D Lawley 2019
Many events in biology are triggered when a diffusing searcher finds a target, which is called a first passage time (FPT). The overwhelming majority of FPT studies have analyzed the time it takes a single searcher to find a target. However, the more relevant timescale in many biological systems is the time it takes the fastest searcher(s) out of many searchers to find a target, which is called an extreme FPT. In this paper, we apply extreme value theory to find a tractable approximation for the full probability distribution of extreme FPTs of diffusion. This approximation can be easily applied in many diverse scenarios, as it depends on only a few properties of the short time behavior of the survival probability of a single FPT. We find this distribution by proving that a careful rescaling of extreme FPTs converges in distribution as the number of searchers grows. This limiting distribution is a type of Gumbel distribution and involves the LambertW function. This analysis yields new explicit formulas for approximations of statistics of extreme FPTs (mean, variance, moments, etc.) which are highly accurate and are accompanied by rigorous error estimates.
In this paper we study first-passge percolation models on Delaunay triangulations. We show a sufficient condition to ensure that the asymptotic value of the rescaled first-passage time, called the time constant, is strictly positive and derive some u pper bounds for fluctuations. Our proofs are based on renormalization ideas and on the method of bounded increments.
107 - Sean D Lawley 2019
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than t he FPT of a single searcher. Extreme FPTs of diffusion have been studied for decades, but little is known for other types of stochastic processes. In this paper, we study the distribution of extreme FPTs of piecewise deterministic Markov processes (PDMPs). PDMPs are a broad class of stochastic processes that evolve deterministically between random events. Using classical extreme value theory, we prove general theorems which yield the distribution and moments of extreme FPTs in the limit of many searchers based on the short time distribution of the FPT of a single searcher. We then apply these theorems to some canonical PDMPs, including run and tumble searchers in one, two, and three space dimensions. We discuss our results in the context of some biological systems and show how our approach accounts for an unphysical property of diffusion which can be problematic for extreme statistics.
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an altern ating renewal process. Bounds to the first-passage-time density and distribution function are obtained, and a simulation procedure to estimate first-passage-time densities is constructed. Examples of applications to problems in environmental sciences and mathematical finance are also provided.
189 - Zbigniew Palmowski 2020
In this paper we analyze the distributional properties of a busy period in an on-off fluid queue and the a first passage time in a fluid queue driven by a finite state Markov process. In particular, we show that in Anick-Mitra-Sondhi model the first passage time has a IFR distribution and the busy period has a DFR distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا