ﻻ يوجد ملخص باللغة العربية
The polarization dependence of nonequilibrium transitions in a multistable cavity-polariton system is studied under a nanosecond long resonant optical excitation at the normal and magic angle incidences with various polarizations of the pump beam. The temporal correlations between the frequency, intensity, and optical polarization of the intra-cavity field, which all undergo sharp threshold-like changes due to the spin dependent interaction of cavity polaritons, are visualized. The observed dynamics cannot be reproduced within the conventional semi-classical model based on the Gross-Pitaevskii equations. To explain the observed phenomena, it is necessary to take into account the unpolarized exciton reservoir which brings on additional blueshift of bright excitons, equal in the $sigma^+$ and $sigma^-$ polarization components. This model explains the effect of polarization instability under both pulsed and continuous wave resonant excitation conditions, consistently with the spin ring pattern formation that has recently been observed under Gaussian shaped excitation.
We realise bistability in the spinor of polariton condensates under non-resonant optical excitation and in the absence of biasing external fields. Numerical modelling of the system using the Ginzburg-Landau equation with an internal Josephson couplin
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors are emerged as sha
We report on the realization of a double barrier resonant tunneling diode for cavity polaritons, by lateral patterning of a one-dimensional cavity. Sharp transmission resonances are demonstrated when sending a polariton flow onto the device. We use a
We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable $I$-$V$ characteristics arise from resonant tunneling and interlayer charge coupling, enabling
We demonstrate that bistability of the nuclear spin polarization in optically pumped semiconductor quantum dots is a general phenomenon possible in dots with a wide range of parameters. In experiment, this bistability manifests itself via the hystere