ترغب بنشر مسار تعليمي؟ اضغط هنا

All-Optical Excitation and Detection of Picosecond Dynamics of Ordered Arrays of Nanomagnets with Varying Areal Density

268   0   0.0 ( 0 )
 نشر من قبل Anjan Barman
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have demonstrated optical excitation and detection of collective precessional dynamics in arrays of coupled Ni80Fe20 (permalloy) nanoelements with systematically varying areal density by an all-optical time-resolved Kerr microscope. We have applied this technique to precisely determine three different collective regimes in these arrays. At very high areal density, a single uniform collective mode is observed where the edge modes of the constituent elements are suppressed. At intermediate areal densities, three nonuniform collective modes appear and at very low areal density, we observe noncollective dynamics and only the centre and edge modes of the constituent elements appear.



قيم البحث

اقرأ أيضاً

We report an all-optical time-domain detection of picosecond magnetization dynamics of arrays of 50 nm Ni80Fe20 (permalloy) dots down to the single nanodot regime. In the single nanodot regime the dynamics reveals one dominant resonant mode correspon ding to the edge mode of the 50 nm dot with slightly higher damping than that of the unpatterned thin film. With the increase in areal density of the array both the precession frequency and damping increases significantly due to the increase in magnetostatic interactions between the nanodots and a mode splitting and sudden jump in apparent damping are observed at an edge-to-edge separation of 50 nm.
Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolv e coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N{e}el-vector-tunneling description of the spin dynamics.
When magnets are fashioned into nanoscale elements, they exhibit a wide variety of phenomena replete with rich physics and the lure of tantalizing applications. In this topical review, we discuss some of these phenomena, especially those that have co me to light recently, and highlight their potential applications. We emphasize what drives a phenomenon, what undergirds the dynamics of the system that exhibits the phenomenon, how the dynamics can be manipulated, and what specific features can be harnessed for technological advances. For the sake of balance, we point out both advantages and shortcomings of nanomagnet based devices and systems predicated on the phenomena we discuss. Where possible, we chart out paths for future investigations that can shed new light on an intriguing phenomenon and/or facilitate both traditional and non-traditional applications.
182 - A. Aqeel , M. Azhar , N. Vlietstra 2020
We study the high-temperature phase diagram of the chiral magnetic insulator Cu$_2$OSeO$_3$ by measuring the spin-Hall magnetoresistance (SMR) in a thin Pt electrode. We find distinct changes in the phase and amplitude of the SMR signal at critical l ines separating different magnetic phases of bulk Cu$_2$OSeO$_3$. The skyrmion lattice state appears as a strong dip in the SMR phase. A strong enhancement of the SMR amplitude is observed in the conical spiral state, which we explain by an additional symmetry-allowed contribution to the SMR present in non-collinear magnets. We demonstrate that the SMR can be used as an all-electrical probe of chiral surface twists and skyrmions in magnetic insulators.
We establish the use of dielectrophoresis for the directed parallel assembly of individual flakes and nanoribbons of few-layer graphene into electronic devices. This is a bottom-up approach where source and drain electrodes are prefabricated and the flakes are deposited from a solution using an alternating electric field applied between the electrodes. These devices are characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy and electron transport measurements. They are shown to be electrically active and their current carrying capacity and subsequent failure mechanism is revealed. Akin to carbon nanotubes, we show that the dielectrophoretic deposition is self-limiting to one flake per device and is scalable to ultra-large-scale integration densities, thereby enabling the rapid screening of a large number of devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا