ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Performances of Slewing Mirror Telescope for UFFO-Pathfinder

112   0   0.0 ( 0 )
 نشر من قبل Soomin Jeong
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ultra-Fast Flash Observatory-Pathfinder (UFFO-P) is to be launched onboard Lomonosov spacecraft in November 2011. It is to measure early UV/Optical photons from Gamma Ray Bursts (GRBs). Slewing Mirror Telescope (SMT) is one of two instruments designed for detection of UV/Optical images of the GRBs. SMT is a Ritchey-Chretien telescope of 100 mm in diameter with a motorized slewing mirror at the entrance providing 17times17 arcmin2 in Field of View (FOV) and 4 arcsec in pixel resolution. Its sky coverage can be further expanded up to 35 degrees in FOV by tilting a motorized slewing mirror. All mirrors were fabricated to about RMS 0.02 waves in wave front error (WFE) and 84.7% (in average reflectivity) over 200nm~650nm range. SMT was aligned to RMS 0.05 waves in WFE (test wavelength 632.8nm). From the static gravity test result, SMT optics system is expected to survive during launch. The technical details of SMT assembly and laboratory performance test results are reported.



قيم البحث

اقرأ أيضاً

287 - J.E. Kim , H.Lim , A. Jung 2011
The Ultra-Fast Flash Observatory (UFFO) is a new space-based experiment to observe Gamma-Ray Bursts (GRBs). GRBs are the most luminous electromagnetic events in the universe and occur randomly in any direction. Therefore the UFFO consists of two tele scopes; UFFO Burst Alert & Trigger Telescope (UBAT) to detect GRBs using a wide field-of-view (FOV), and a Slewing Mirror Telescope (SMT) to observe UV/optical events rapidly within the narrow, targeted FOV. The SMT is a Ritchey-Chretien telescope that uses a motorized mirror system and an Intensified Charge-Coupled Device (ICCD). When the GRB is triggered by the UBAT, the SMT receives the position information and rapidly tilts the mirror to the target. The ICCD start to take the data within a second after GRB is triggered. Here we give the details about the SMT readout electronics that deliver the data.
135 - I.H. Park , B. Grossan , H. Lim 2009
Hundreds of gamma-ray burst (GRB) UV-optical light curves have been measured since the discovery of optical afterglows, however, even after nearly 5 years of operation of the SWIFT observatory, only a handful of measurements have been made soon (with in a minute) after the gamma ray signal. This lack of early observations fails to address burst physics at the short time scales associated with burst events and progenitors. Because of this lack of sub-minute data, the characteristics of the UV-optical light curve of short-hard type GRB and rapid-rising GRB, which may account for ~30% of all GRB, remain practically unknown. We have developed methods for reaching the sub-minute and the sub-second timescales in a small spacecraft observatory appropriate for launch on a microsatellite. Rather than slewing the entire spacecraft to aim the UV-optical instrument at the GRB position, we use rapidly moving mirrors to redirect our optical beam. Our collaboration has produced a unique MEMS (microelectromechanical systems) micromirror array which can point and settle on target in only 1 ms. This technology is proven, flying successfully as the MTEL (MEMS Telescope for Extreme Lightning) on the Tatiana-2 Spacecraft in September 2009 and as the KAMTEL on the International Space Station in April 2008. The sub-minute measurements of the UV-optical emission of dozens of GRB each year will result in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, and provide the first early and detailed measurements of fast-rise and short type GRB UV-optical light curves.
225 - G. W. Na , K. -B. Ahn , H. S. Choi 2011
The Ultra-Fast Flash Observatory (UFFO) Pathfinder is a payload on the Russian Lomonosov satellite, scheduled to be launched in November 2011. The Observatory is designed to detect early UV/Optical photons from Gamma-Ray Bursts (GRBs). There are two telescopes and one main data acquisition system: the UFFO Burst Alert & Trigger Telescope (UBAT), the Slewing Mirror Telescope (SMT), and the UFFO Data Acquisition (UDAQ) system. The UDAQ controls and manages the operation and communication of each telescope, and is also in charge of the interface with the satellite. It will write the data taken by each telescope to the NOR flash memory and sends them to the satellite via the Bus-Interface system (BI). It also receives data from the satellite including the coordinates and time of an external trigger from another payload, and distributes them to two telescopes. These functions are implemented in field programmable gates arrays (FPGA) for low power consumption and fast processing without a microprocessor. The UDAQ architecture, control of the system, and data flow will be presented.
291 - P. Chen 2011
Hundreds of gamma-ray burst (GRB) optical light curves have been measured since the discovery of optical afterglows. However, even after nearly 7 years of operation of the Swift Observatory, only a handful of measurements have been made soon (within a minute) after the gamma ray signal. This lack of early observations fails to address burst physics at short time scales associated with prompt emissions and progenitors. Because of this lack of sub-minute data, the characteristics of the rise phase of optical light curve of short-hard type GRB and rapid-rising GRB, which may account for ~30% of all GRB, remain practically unknown. We have developed methods for reaching sub-minute and sub-second timescales in a small spacecraft observatory. Rather than slewing the entire spacecraft to aim the optical instrument at the GRB position, we use rapidly moving mirror to redirect our optical beam. As a first step, we employ motorized slewing mirror telescope (SMT), which can point to the event within 1s, in the UFFO Pathfinder GRB Telescope onboard the Lomonosov satellite to be launched in Nov. 2011. UFFOs sub-minute measurements of the optical emission of dozens of GRB each year will result in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, provide the first early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. We will describe the science and the mission of the current UFFO Pathfinder project, and our plan of a full-scale UFFO-100 as the next step.
164 - J. Ripa , M. B. Kim , J. Lee 2015
The Ultra-Fast Flash Observatory pathfinder (UFFO-p) is a new space mission dedicated to detect Gamma-Ray Bursts (GRBs) and rapidly follow their afterglows in order to provide early optical/ultraviolet measurements. A GRB location is determined in a few seconds by the UFFO Burst Alert & Trigger telescope (UBAT) employing the coded mask imaging technique and the detector combination of Yttrium Oxyorthosilicate (YSO) scintillating crystals and multi-anode photomultiplier tubes. The results of the laboratory tests of UBATs functionality and performance are described in this article. The detector setting, the pixel-to-pixel response to X-rays of different energies, the imaging capability for <50 keV X-rays, the localization accuracy measurements, and the combined test with the Block for X-ray and Gamma-Radiation Detection (BDRG) scintillator detector to check the efficiency of UBAT are all described. The UBAT instrument has been assembled and integrated with other equipment on UFFO-p and should be launched on board the Lomonosov satellite in late-2015.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا