ﻻ يوجد ملخص باللغة العربية
Context: The blazar Markarian 421 is one of the brightest TeV gamma-ray sources of the northern sky. From December 2007 until June 2008 it was intensively observed in the very high energy (VHE, E > 100 GeV) band by the single-dish Major Atmospheric Gamma-ray Imaging Cherenkov telescope (MAGIC-I). Aims: We aimed to measure the physical parameters of the emitting region of the blazar jet during active states. Methods: We performed a dense monitoring of the source in VHE with MAGIC-I, and also collected complementary data in soft X-rays and optical-UV bands; then, we modeled the spectral energy distributions (SED) derived from simultaneous multi-wavelength data within the synchrotron self--compton (SSC) framework. Results: The source showed intense and prolonged gamma-ray activity during the whole period, with integral fluxes (E > 200 GeV) seldom below the level of the Crab Nebula, and up to 3.6 times this value. Eight datasets of simultaneous optical-UV (KVA, Swift/UVOT), soft X-ray (Swift/XRT) and MAGIC-I VHE data were obtained during different outburst phases. The data constrain the physical parameters of the jet, once the spectral energy distributions obtained are interpreted within the framework of a single-zone SSC leptonic model. Conclusions: The main outcome of the study is that within the homogeneous model high Doppler factors (40 <= delta <= 80) are needed to reproduce the observed SED; but this model cannot explain the observed short time-scale variability, while it can be argued that inhomogeneous models could allow for less extreme Doppler factors, more intense magnetic fields and shorter electron cooling times compatible with hour or sub-hour scale variability.
We report on TeV gamma-ray observations of the blazar Mrk 421 (redshift of 0.031) with the VERITAS observatory and the Whipple 10m Cherenkov telescope. The excellent sensitivity of VERITAS allowed us to sample the TeV gamma-ray fluxes and energy spec
We study the multi-wavelength variability of the blazar Mrk 421 at minutes to days timescales using simultaneous data at $gamma$-rays from Fermi, 0.7-20 keV energies from AstroSat, and optical and near-infrared (NIR) wavelengths from ground-based obs
Mrk 421 and Mrk 501 are two close, bright and well-studied high-synchrotron-peaked blazars, which feature bright and persistent GeV and TeV emission. We use the longest and densest dataset of unbiased observations of these two sources, obtained at Te
The blazar Mrk 421 shows frequent, short flares in the TeV energy regime. Due to the fast nature of such episodes, we often fail to obtain sufficient simultaneous information about flux variations in several energy bands. To overcome this lack of mul
We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, tha