ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmons in strong superconductors

37   0   0.0 ( 0 )
 نشر من قبل Camille Ducoin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to, or smaller than the pairing gap. As a prototype of these systems we consider the proton component of neutron star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation mode. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high T$_c$ superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

قيم البحث

اقرأ أيضاً

High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been obse rved for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates.
We present a comprehensive comparison of the infrared charge response of two systems, characteristic of classes of the 122 pnictide (SrFe2As2) and 11 chalcogenide (Fe_1.087Te) Fe compounds with magnetically-ordered ground states. In the 122 system, t he magnetic phase shows a decreased plasma frequency and scattering, and associated appearance of strong mid-infrared features. The 11 system, with a different magnetic ordering pattern, also shows decreased scattering, but an increase in the plasma frequency, while no clear mid-infrared features appear below the ordering temperature. We suggest how this marked contrast can be understood in terms of the diverse magnetic ordering patterns of the ground state, and conclude that while the high temperature phases of these systems are similar, the magnetic ordering strongly affects the charge dynamical response. In addition, we propose an optical absorption mechanism which appears to be consistent with information gained from several different experiments.
We study the entanglement entropy as a probe of the proximity effect of a superconducting system by using the gauge/gravity duality in a fully back-reacted gravity system. While the entanglement entropy in the superconducting phase is less than the e ntanglement entropy in the normal phase, we find that near the contact interface of the superconducting to normal phase the entanglement entropy has a different behavior due to the leakage of Cooper pairs to the normal phase. We verify this behavior by calculating the conductivity near the boundary interface.
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy waterfall or high energy anomaly (HEA). This paper d emonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the waterfall-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
We numerically investigate some properties of unbalanced St{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St{u}ckelbergs model parameters $C_{alpha}$ and $alpha$ not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of $alpha$ on the amplitude of conductivity fluctuations depends on the magnitude of the both $C_{alpha}$ and $deltamu/mu$ in the electric and thermal conductivity cases. This results in that increasing $alpha$ can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا